Dibuat oleh : Yessica (2013-52-017). Notes Output Created 23-MAY-2014 10:54:51 Comments Input Active Dataset DataSet0 Filter Weight Split File N of Rows.

Slides:



Advertisements
Presentasi serupa
(DESCRIPTIVE ANALYZE)
Advertisements

Analisis Regresi.
Hasil Penelitian Produk Pocari Sweat
Hasil Penelitian Produk Lifebuoy
Pengantar Statistika -3
Pokok Bahasan Pertemuan 12:
UJI VALIDITAS DAN UJI RELIABILITAS
© aSup-2007 PENGENALAN SPSS   1 INTRODUCTION to SPSS Statistical Package for Social Science.
MODUL 2 BY : ERVI COFRIYANTI
TUGAS STATISTIK Hubungan dan Pengaruh
Aplikasi Program Analisis Data (SPSS)
UJI ASUMSI KLASIK.
StatistikSpss. Rahmat Hidayatullah ( )
Universitas Esa Unggul
1. Validitas 1. Validitas Suatu ukuran untuk mengetahui apakah kuisoner yang disusun tersebut itu valid atau sah, maka perlu diuji dengan korelasi antara.
Analisis Data dengan SPSS
PRODUK SABUN BATANGAN LIFEBUOY
INTRODUCTION TO SPSS Statistical Package for Social Science 1.
Analisis Regresi Linier
RELIABILITAS & VALIDITAS
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
UJI ASUMSI KLASIK.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
Analisis Regresi. ANALISIS REGRESI Melihat ‘pengaruh’ variable bebas/independet variabel/ thd variable terikat/dependent variabel. Berdasarkan jumlah.
Uji Hubungan : Korelasi dan Regresi
Contoh Perhitungan Regresi Oleh Jonathan Sarwono.
FEB Univ. 17 Agustus 1945 Jakarta
MODUL 11 METODE PENELITIAN ANALISIS DATA (ANALISIS REGRESI)
PENGARUH DISIPLIN TERHADAP KINERJA KARYAWAN PADA PT. REKATAMA
PENGUJIAN DATA.
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
MAGISTER MANAGEMENT PROGRAM UNIVERSITAS KOMPUTER INDONESIA
FEB Univ. 17 Agustus 1945 Jakarta
Validitas dan reliabilitas
Uji Validitas & Uji Reliabilitas
Analisis Regresi Linier Berganda dan Uji t
UJI VALIDITAS DAN UJI RELIABILITAS
Uji VALIDITAS DAN RELIABILITAS Dosen: EVELLIN D. LUSIANA, S.Si, M.Si
MENGHITUNG NILAI SKOR IRMALA DEWI.Y RUDY HARTONO
KORELASI & REGRESI.
Assalamu’alaikum Warohmatullohi Wabarokatuh
UJI VALIDITAS DAN RELIABILITAS
Path analysis (analisis jalur)
JURUSAN PENDIDIKAN EKONOMI
RELIABILITAS DAN VALIDITAS
MODUL 10 ANALISIS REGRESI
Uji Validitas dan realibilitas instrumen
UJI INSTRUMEN Yustina Chrismardani.
Regresi linier satu variable Independent
ANALISIS DASAR DALAM STATISTIKA
VALIDITAS DAN REABILITAS REGRESI BERGANDA Nori Sahrun, S.Kom., M.Kom
Pertemuan Kesepuluh Data Analysis
Analisis Regresi.
UJI VALIDITAS & REALIBILITAS
Regresi Linier Beberapa Variable Independent
Regresi Linier Beberapa Variable Independent
UJI VALIDITAS-RELIABILITAS
Regresi Berganda Dengan Variabel Dummy
Validitas dan Reliabilitas
Probabilitas dan Statistika
PENGARUH KUALITAS PELAYANAN TERHADAP KEPUASAN KONSUMEN DI PIZZA HUR DTC DEPOK DISUSUSUN OLEH : WISNU HENDARTO ( ) M.HASAN BASRI ( )
Analisis Validitas, Reabilitas, dan Faktor
Analisis Regresi Linier Berganda
W ELCOME TO OUR PRESENTATION. N AMA - NAMA KELOMPOK 4: Falum zulhija Un rumasukun Astari kaisuku Freddi hematung Johanes batlayeri.
Misalkan kuesioner adalah sasaran tembak seperti pada gambar berikut ini. Anggap bahwa pusat sasaran tembak itu adalah target dari apa yang kita ukur.
Oleh: Muhammad Arif rahman
UJI VALIDITAS DAN RELIABILITAS
Regresi Linier dan Korelasi
VALIDITAS DAN RELIABILITAS
Transcript presentasi:

Dibuat oleh : Yessica ( )

Notes Output Created 23-MAY :54:51 Comments Input Active Dataset DataSet0 Filter Weight Split File N of Rows in Working Data File 30 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each pair of variables are based on all the cases with valid data for that pair. Syntax CORRELATIONS /VARIABLES=p1 p2 p3 p4 X1 /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE. Resources Processor Time 00:00:00,02 Elapsed Time 00:00:00,05 Correlations

Tayangan stasiun tv memenuhi kebutuhan Tayangan stasiun tv sesuai dengan harapan Tayangan stasiun tv bermanfaat Memiliki pengalaman yang menarik pada stasiun tv ini HARAPAN PEMIRSA (X1) Tayangan stasiun tv memenuhi kebutuhan Pearson Correlation 1,732 **,632 **,161,865 ** Sig. (2-tailed),000,395,000 N 30 Tayangan stasiun tv sesuai dengan harapan Pearson Correlation,732 ** 1,539 **,135,807 ** Sig. (2-tailed),000,002,478,000 N 30 Tayangan stasiun tv bermanfaat Pearson Correlation,632 **,539 ** 1,270,803 ** Sig. (2-tailed),000,002,149,000 N 30 Memiliki pengalaman yang menarik pada stasiun tv ini Pearson Correlation,161,135,2701,490 ** Sig. (2-tailed),395,478,149,006 N 30 HARAPAN PEMIRSA (X1) Pearson Correlation,865 **,807 **,803 **,490 ** 1 Sig. (2-tailed),000,006 N 30

Notes Output Created 23-MAY :56:12 Comments Input Active Dataset DataSet0 Filter Weight Split File N of Rows in Working Data File 30 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each pair of variables are based on all the cases with valid data for that pair. Syntax CORRELATIONS /VARIABLES=p5 p6 p7 p8 X2 /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE. Resources Processor Time 00:00:00,13 Elapsed Time 00:00:00,15 Correlations

Kinerja stasiun tv baik stasiun tv memiliki tayangan lebih menarik dari pesaingnya Tayang stasiun tv memilik tayangan yang dapat menjangkau seluruh usia Reputasi stasiun tv baik KUALITAS STASIUN TV (X2) Kinerja stasiun tv baik Pearson Correlation 1,267,412 *,574 **,720 ** Sig. (2-tailed),154,024,001,000 N 30 stasiun tv memiliki tayangan lebih menarik dari pesaingnya Pearson Correlation,2671,515 **,354,717 ** Sig. (2-tailed),154,004,055,000 N 30 Tayang stasiun tv memilik tayangan yang dapat menjangkau seluruh usia Pearson Correlation,412 *,515 ** 1,506 **,831 ** Sig. (2-tailed),024,004,000 N 30 Reputasi stasiun tv baik Pearson Correlation,574 **,354,506 ** 1,769 ** Sig. (2-tailed),001,055,004,000 N 30 KUALITAS STASIUN TV (X2) Pearson Correlation,720 **,717 **,831 **,769 ** 1 Sig. (2-tailed),000 N 30 *. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed).

Notes Output Created 23-MAY :57:22 Comments Input Active Dataset DataSet0 Filter Weight Split File N of Rows in Working Data File 30 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each pair of variables are based on all the cases with valid data for that pair. Syntax CORRELATIONS /VARIABLES=p9 p10 p11 p12 Y /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE. Resources Processor Time 00:00:00,17 Elapsed Time 00:00:00,17

Correlations Memiliki keluhan terhadap stasiun tv Puas dengan stasiun tv Tayangan yang diterima dari stasiun tv sesuai Tayangan stasiun tv melampaui yang diharapkan KEPUASAN PEMIRSA (Y) Memiliki keluhan terhadap stasiun tv Pearson Correlation 1,559 **,363 *,388 *,728 ** Sig. (2-tailed),001,049,034,000 N 30 Puas dengan stasiun tv Pearson Correlation,559 ** 1,643 **,685 **,879 ** Sig. (2-tailed),001,000 N 30 Tayangan yang diterima dari stasiun tv sesuai Pearson Correlation,363 *,643 ** 1,679 **,823 ** Sig. (2-tailed),049,000 N 30 Tayangan stasiun tv melampaui yang diharapkan Pearson Correlation,388 *,685 **,679 ** 1,829 ** Sig. (2-tailed),034,000 N 30 KEPUASAN PEMIRSA (Y) Pearson Correlation,728 **,879 **,823 **,829 ** 1 Sig. (2-tailed),000 N 30 **. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

Notes Output Created 23-MAY :59:35 Comments Input Active Dataset DataSet0 Filter Weight Split File N of Rows in Working Data File 30 Matrix Input Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data for all variables in the procedure. Syntax RELIABILITY /VARIABLES=p1 p2 p3 p4 X1 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE /SUMMARY=TOTAL. Resources Processor Time 00:00:00,00 Elapsed Time 00:00:00,00 Reliability

Case Processing Summary N% Cases Valid 30100,0 Excluded a 0,0 Total 30100,0 a. Listwise deletion based on all variables in the procedure. Reliability Statistics Cronbach's AlphaN of Items,7975 Item Statistics MeanStd. DeviationN Tayangan stasiun tv memenuhi kebutuhan 3,6333, Tayangan stasiun tv sesuai dengan harapan 3,33331, Tayangan stasiun tv bermanfaat 3,3000, Memiliki pengalaman yang menarik pada stasiun tv ini 3,2333, HARAPAN PEMIRSA (X1) 13,56672, Item-Total Statistics Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item- Total Correlation Cronbach's Alpha if Item Deleted Tayangan stasiun tv memenuhi kebutuhan 23,433323,357,808,736 Tayangan stasiun tv sesuai dengan harapan 23,733322,271,740,731 Tayangan stasiun tv bermanfaat 23,766723,978,740,750 Memiliki pengalaman yang menarik pada stasiun tv ini 23,833327,109,364,816 HARAPAN PEMIRSA (X1) 13,50007,845,991,740 Scale: ALL VARIABLES

Notes Output Created 26-MAY :20:26 Comments Input Data D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav Active Dataset DataSet1 Filter Weight Split File N of Rows in Working Data File 30 Matrix Input D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data for all variables in the procedure. Syntax RELIABILITY /VARIABLES=p5 p6 p7 p8 X2 /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE /SUMMARY=TOTAL. Resources Processor Time 00:00:00,02 Elapsed Time 00:00:00,04 Reliability

Case Processing Summary N% Cases Valid 30100,0 Excluded a 0,0 Total 30100,0 a. Listwise deletion based on all variables in the procedure. Reliability Statistics Cronbach's AlphaN of Items,8015 Item Statistics MeanStd. DeviationN Kinerja stasiun tv baik 3,6667, stasiun tv memiliki tayangan lebih menarik dari pesaingnya 3,2333, Tayang stasiun tv memilik tayangan yang dapat menjangkau seluruh usia 3,86671, Reputasi stasiun tv baik 3,8333, KUALITAS STASIUN TV (X2)14,60002, Item-Total Statistics Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item-Total Correlation Cronbach's Alpha if Item Deleted Kinerja stasiun tv baik 25,533321,085,630,775 stasiun tv memiliki tayangan lebih menarik dari pesaingnya 25,966720,792,619,773 Tayang stasiun tv memilik tayangan yang dapat menjangkau seluruh usia 25,333318,782,753,733 Reputasi stasiun tv baik 25,366721,344,703,772 KUALITAS STASIUN TV (X2)14,60006,5931,000,750 Scale: ALL VARIABLES

Notes Output Created 26-MAY :21:23 Comments Input Data D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav Active Dataset DataSet1 Filter Weight Split File N of Rows in Working Data File 30 Matrix Input Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on all cases with valid data for all variables in the procedure. Syntax RELIABILITY /VARIABLES=p9 p10 p11 p12 Y /SCALE('ALL VARIABLES') ALL /MODEL=ALPHA /STATISTICS=DESCRIPTIVE /SUMMARY=TOTAL. Resources Processor Time 00:00:00,02 Elapsed Time 00:00:00,02 Reliability

Case Processing Summary N% Cases Valid 30100,0 Excluded a 0,0 Total 30100,0 a. Listwise deletion based on all variables in the procedure. Reliability Statistics Cronbach's AlphaN of Items,8185 Item Statistics MeanStd. DeviationN Memiliki keluhan terhadap stasiun tv 3,53331, Puas dengan stasiun tv 3,3333, Tayangan yang diterima dari stasiun tv sesuai 3,06671, Tayangan stasiun tv melampaui yang diharapkan 2,6333, KEPUASAN PEMIRSA (Y)12,56673, Item-Total Statistics Scale Mean if Item Deleted Scale Variance if Item Deleted Corrected Item-Total Correlation Cronbach's Alpha if Item Deleted Memiliki keluhan terhadap stasiun tv 21,600034,593,631,793 Puas dengan stasiun tv 21,800034,028,838,769 Tayangan yang diterima dari stasiun tv sesuai 22,066733,651,758,773 Tayangan stasiun tv melampaui yang diharapkan 22,500034,948,776,782 KEPUASAN PEMIRSA (Y)12,566711,0821,000,823 Scale: ALL VARIABLES

Notes Output Created 26-MAY :27:25 Comments Input Data D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav Active Dataset DataSet1 Filter Weight Split File N of Rows in Working Data File 30 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics are based on cases with no missing values for any variable used. Syntax REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS BCOV R ANOVA COLLIN TOL /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT Y /METHOD=ENTER X1 X2 /RESIDUALS DURBIN. Resources Processor Time 00:00:00,03 Elapsed Time 00:00:00,05 Memory Required 1884 bytes Additional Memory Required for Residual Plots 0 bytes Regression [DataSet1] D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav

Variables Entered/Removed a ModelVariables EnteredVariables RemovedMethod 1 KUALITAS STASIUN TV (X2), HARAPAN PEMIRSA (X1) b.Enter a. Dependent Variable: KEPUASAN PEMIRSA (Y) b. All requested variables entered. Model Summary b ModelRR SquareAdjusted R Square Std. Error of the Estimate Durbin-Watson 1,865 a,749,7301,728642,417 a. Predictors: (Constant), KUALITAS STASIUN TV (X2), HARAPAN PEMIRSA (X1) b. Dependent Variable: KEPUASAN PEMIRSA (Y) ANOVA a ModelSum of SquaresdfMean SquareFSig. 1 Regression 240, ,34240,272,000 b Residual 80,682272,988 Total 321,36729 a. Dependent Variable: KEPUASAN PEMIRSA (Y) b. Predictors: (Constant), KUALITAS STASIUN TV (X2), HARAPAN PEMIRSA (X1)

Coefficients a ModelUnstandardized Coefficients Standardized Coefficients tSig.Collinearity Statistics BStd. ErrorBetaToleranceVIF 1 (Constant) -4,6431,952 -2,379,025 HARAPAN PEMIRSA (X1),292,142,2442,059,049,6611,512 KUALITAS STASIUN TV (X2),908,154,7005,906,000,6611,512 a. Dependent Variable: KEPUASAN PEMIRSA (Y) Coefficient Correlations a Model KUALITAS STASIUN TV (X2) HARAPAN PEMIRSA (X1) 1 Correlations KUALITAS STASIUN TV (X2) 1,000-,582 HARAPAN PEMIRSA (X1) -,5821,000 Covariances KUALITAS STASIUN TV (X2),024-,013 HARAPAN PEMIRSA (X1) -,013,020 a. Dependent Variable: KEPUASAN PEMIRSA (Y) Collinearity Diagnostics a ModelDimensionEigenvalueCondition IndexVariance Proportions (Constant) HARAPAN PEMIRSA (X1) KUALITAS STASIUN TV (X2) 1 1 2,9671,000,00 2,02012,241,67,65,00 3,01315,219,33,351,00 a. Dependent Variable: KEPUASAN PEMIRSA (Y)

Residuals Statistics a MinimumMaximumMeanStd. DeviationN Predicted Value 5,826517,853712,56672, Residual -3,672513,14325,000001, Std. Predicted Value -2,3401,835,0001,00030 Std. Residual -2,1251,818,000,96530 a. Dependent Variable: KEPUASAN PEMIRSA (Y) Notes Output Created 26-MAY :48:12 Comments Input Data D:\STATISTIK 1 SPSS\Untitled1 DATA AWAL.sav Active Dataset DataSet1 Filter Weight Split File N of Rows in Working Data File 30 Missing Value Handling Definition of Missing User-defined missing values are treated as missing. Cases Used Statistics for each pair of variables are based on all the cases with valid data for that pair. Syntax CORRELATIONS /VARIABLES=X1 X2 Y /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE. Resources Processor Time 00:00:00,03 Elapsed Time 00:00:00,03

Correlations HARAPAN PEMIRSA (X1) KUALITAS STASIUN TV (X2) KEPUASAN PEMIRSA (Y) HARAPAN PEMIRSA (X1) Pearson Correlation 1,582 **,652 ** Sig. (2-tailed),001,000 N 30 KUALITAS STASIUN TV (X2) Pearson Correlation,582 ** 1,842 ** Sig. (2-tailed),001,000 N 30 KEPUASAN PEMIRSA (Y) Pearson Correlation,652 **,842 ** 1 Sig. (2-tailed),000 N 30

Terima Kasih atas perhatiannya