Ditemukan oleh Piere Simon Maequis de Laplace tahun ( ) seorang ahli astronomi dan matematika Prancis Menurut; fungsi waktu atau f(t) dapat ditranspormasi menjadi fungsi komplek atau F(s) –Dimana s bilangan komplek dari s = + j2 f atau + j = frekuensi neper = neper/detik = frekuensi radian = radian/detik
Hasil TL dari f(t) di beri nama F(s) Tanda TL diberikan dengan £ atau L, dan fungsinya di tulis f(t): nilai komplek dari fungsi sebuah fariabel t F(s): Nilai komplek dari fungsi sebuah fariabel s
Inverse Transformasi Laplace Inverse (Bilateral) Transform Notation F(s) = L{f(t)}variable t tersirat untuk L f(t) = L -1 {F(s)}variable s tersirat untuk L -1
Contoh: Transpormasi Laplace 1. f(t) = A –Jawab
Contoh 2. f(t) = At Jawab Dibantu dengan formula integral partsiel yaitu
Contoh 3 f(t) = e -at jawab
Contoh 4 : f(t) = t.e -at
5.f(t) = Sin( t) 6.f(t) = Cos ( t) 7.f(t) = Sin( t+ ) 8.f(t) = e -at. Sin( t)
Contoh 9; f(0+) artinya harga nol untuk fungsi, jika didekati dari arah positif
Contoh 10;
f(t) L (f)f(t) L (f) 1 1 1/s 7 cos t 2 t 1/s 2 8 sin t 3 t2t2 2!/s 3 9 cosh at 4 t n (n=0, 1,…) 10 sinh at 5 t a (a positive) 11 e at cos t 6 e at 12 e at sin t
Some useful Laplace transforms f(t)F(s)=L[f(t)]
Some useful Laplace transforms f(t)F(s)=L[f(t)]
L F(s)f(t)f(t) Laplace Transform Properties Linear atau Nonlinear? Linear operator
contoh Seperti gambar disamping, muatan awal kapasitor = 0. Tentukan persamaan arusnya;
Transpormasi Laplace
Pembalikan transpormasi laplace Lihat tabel
Contoh 2 Gambar RL seperti gambar disamping, jika saklar s di on-kan maka tentukan persamaan arunya
Persamaan rangkaian Transpormasi Laplace
Transpormasi dari cos t
Laplace transform Definition of function f(t) Examples f(t)=0 for t<0 defined for t>=0 possibly with discontinuities f(t) <Mexp( t)[exponential order] s: real or complex t f(t) Definition of Laplace transform
Laplace transform Examples f(t) Dirac t t f(t)
Laplace transform Examples f(t)Heaviside t f(t) t
Laplace transform Examples f(t) Ramp t
Laplace transform properties Linearity
Laplace transform properties Translation a) if F(s)=L[f(t)] Example
Laplace transform properties Translation b) if g(t) = f(t-a) for t>a = 0 for t<a a t f(t) g(t) Example
Laplace transform properties Change of time scale Example
Derivatives Laplace transform properties
Derivatives Laplace transform properties If discontinuity in a
Derivatives examples Laplace transform properties
Remarques sur la dérivation Deux cas à prévoir En intégrant par parties a) b) Si f(t) et toutes ses dérivées sont nulles pour t<0, alors on peut ne pas tenir compte des valeurs initiales pour étudier le comportement
Laplace transform properties Integral
Laplace transform properties Multiplication by t Leibnitz’s rule More general
Laplace transform properties Division by t
Periodic function Laplace transform properties
Hint
Laplace transform properties Sine and cosine are periodic functions
Laplace transform properties Example t f(t)
Laplace transform properties Periodic function
Laplace transform properties Example 1 t 0123
Laplace transform properties
Limit behaviour Initial value Laplace transform properties Exponential order
Limit behaviour Final value Laplace transform properties
Laplace transform applications C R e0. (t) v(t) RC circuit Equation describing the circuit Laplace transform
Laplace transform applications Impulse function Impulse response
Laplace transform applications Step function e0
Laplace transform applications Step function and initial conditions v(0) 0
Laplace transform applications Ramp function
(Heaviside) Laplace transform properties a t
at
Limits Initial value Final value
e(t) E(s) v(t) V(s) R C Harmonic analysis Laplace transform properties
Forced Transient