LOGARITMA.

Slides:



Advertisements
Presentasi serupa
Logaritma dengan basis 10
Advertisements

Assalamu alaikum warrahmatullahi wabarrakatuh. Oleh : Rizkha sefril ery p ( ) Sarwo edy wibowo ( )
PENGEMBANGAN BAHAN AJAR
SMA Negeri 11 Yogyakarta REFERENSI LATIHAN MATERI PENYUSUN INDIKATOR SK / KD UJI KOMPETENSI BERANDA SELESAI LOGARITMA OLEH: SETYAWATI, S.Pd.Si MATEMATIKA.
BAB 8 FUNGSI, PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA HOME NEXT.
BENTUK LOGARITMA Berikut ini sifat-sifat pokok logaritma yang diperlukan untuk memecahkan berbagai soal yang berkaitan dengan logaritma. Teorema 1.1 Jika.
LOGARITMA Definisi :Jika a adalah bilangan positif (a>0) dan g adalah bilangan positif tidak sama dengan satu(0
Kelas X-G Nia Septiani Sari Astuti Sunarti Wadiyati Susilowati Kelompok x Jl. Nangka No. 58C, Tanjung.
Berkelas.
PERTEMUAN 7 FUNGSI.
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
DERIVATIF/TURUNAN MATERI MATBIS.
LOGARITMA alog b = x  b = ax.
Grafik fungsi eksponensial dan logaritma
OLEH Fattaku Rohman,S.PD
Assalamuaikum Wr. Wb.. Anne hara A *Tujuan* *pembelajaran* *indikator* *Kompetensi* *dasar* materi latihantugas.
3.2.4 Fungsi komposisi Fungsi komposisi adalah fungsi yang merupakan kombinasi dari beberapa fungsi. Misal terdapat dua buah fungsi, yaitu f dan g. Jika.
BAB 3 PANGKAT, AKAR DAN LOGARITMA.
L O G A R I T M A PEMBIMBING GISOESILO ABUDI, S.Pd.
ASSALAMUALAIKUM WR.WB LOGARITMA R A T N.
PANGKAT, AKAR & LOGARITMA
Assalamu’alaikum wr. wb
1 a. bilangan pokok = a b. pangkatnya adalah 5
Pangkat, Akar dan Logaritma
Agenda 1. Aturan rantai 2. Turunan orde tinggi 3. Turunan Fungsi Logaritma 4. Turunan Fungsi Eksponen 5. Turunan fungsi implisit.
Fungsi Eksponensial, Logaritma & Invers
PEMBELAJARAN MATEMATIKA
بسم الله الرحمن الرحيم BARISAN DAN DERET Suherman, M.Si.
BAB 2 LOGARITMA.
Pangkat bulat positif Pengertian
Nama : Maria Januaria Bay ( ) Maria Helena Sea ( )
Eksponen, Bentuk Akar, dan Logaritma serta Fungsinya
MATEMATIKA I Vivi Tri Widyaningrum,S.Kom, MT.
Logaritma Kelas X Semester 1 Penyusun : Drs. Yusfik Anwari
LOGARITMA.
Pangkat bulat positif Pengertian
PANGKAT AKAR DAN LOGARITMA
LOGARITMA alog b = x  b = ax.
Perpangkatan dan Bentuk Akar
Logaritma Persamaan Logaritma.
PANGKAT, AKAR DAN LOGARITMA
NOER ZILLA AYU WIDIYASARI PMTK / / 6e
PERTEMUAN 14 TURUNAN.
FUNGSI LOGARITMA DAN EKSPONEN
RELA berbagi IKHLAS memberi
LOGARITMA.
FUNGSI EKSPONEN DAN LOGARITMA
LOGARITMA.
EKSPONEN DAN LOGARITMA
Pangkat, Akar dan Logaritma
Jl. Krekot III No.1, RT.4/RW.5, Ps. Baru, Sawah Besar, Kota Jakarta Pusat, Daerah Khusus Ibukota Jakarta
PANGKAT, AKAR LOGARITMA
1. Bentuk Pangkat, Akar, dan logaritma
Pangkat, Akar dan Logaritma
BENTUK PANGKAT AKAR dan LOGARITMA
LOGARITMA alog b = x  b = ax.
BAB 1 Bentuk Pangkat, Akar, dan Logaritma
dan LOGARITMA EKSPONEN Kelompok 3 :
ASSALAMU’ALAIKUM Wr. Wb
LOGARITMA HADI SUNARTO, SPd
LOGARITMA Definisi :Jika a adalah bilangan positif (a>0) dan g adalah bilangan positif tidak sama dengan satu(0
02 BILANGAN BENTUK PANGKAT DAN LOGARITMA Drs. Sapto Prayogo. M.Kom
BENTUK PANGKAT, AKAR, DAN LOGARITMA
Kalkulus Diferensial: Fungsi Dengan Satu Variabel Bebas
Peta Konsep. Peta Konsep F. Logaritma.
LOGARITMA alog b = x  b = ax.
LOGARITMA DISUSUN OLEH : YENY KURMAYNINGSIH ( )
J. Risambessy. 1. Eksponen a. Pengertian Eksponen b. Sifat – Sifat Fungsi Eksponen c. Persamaan Eksponen d. Pertidaksamaan Eksponen 2.Logaritma a. Pegertian.
SMA/MA Kelas X Semester 1 Peminatan Matematika dan Ilmu-Ilmu Alam
Tugas Pangkat Akar dan Logaritma (Kompetensi Dasar 1)
Transcript presentasi:

LOGARITMA

Pengertian Logaritma Jika : pm = a Plog a = m Keterangan: p disebut bilangan pokok a disebut bilangan logaritma atau numerus dengan a > 0 m disebut hasil logaritma atau eksponen dari basis

Logaritma dengan basis 10 Pada bentuk plog a = m, maka: 10log a = m cukup ditulis log a = m. Basis 10 pada logaritma tidak perlu dituliskan. Contoh: 10log 3  dituliskan log 3 10log 5  dituliskan log 5

Sifat-sifat Logaritma 1. plog (a x b) = plog a + plog b 2. plog (a : b) = plog a - plog b 3. plog (a)n = n x plog a = plog (a) n m 4. plog n m plog a =

Contoh Soal

Contoh Soal 1. Jika 2log x = 3 Tentukan nilai x = …. Jawab: 2log x = 3  x = 23 x = 8.

Contoh Soal 2. Jika 4log 64 = x Tentukan nilai x = …. Jawab: 4log 64 = x  4x = 64 4x = 44 x = 4.

Contoh Soal 3. Nilai dari 2log 8 + 3log 9 = …. Jawab: = 2log 8 + 3log 9 = 2log 23 + 3log 32 = 3 + 2 = 5

Contoh Soal 4. Nilai dari 2log (8 x 16) = …. Jawab: = 2log 8 + 2log 16 = 2log 23 + 2log 24 = 3 + 4 = 7

Contoh Soal 5. Nilai dari 3log (81 : 27) = …. Jawab: = 3log 81 - 3log 27 = 3log 34 - 3log 33 = 4 - 3 = 1

Contoh Soal 6. Nilai dari 2log 84 = …. Jawab: = 2log 84 = 4 x 2log 23 = 4 x 3 = 12

Contoh Soal 7. Nilai dari 2log 84 = …. Jawab: = 2log 84  = 2 x 2log 23 = 2 x 3 = 6 2 4 2log 8 =

Contoh Soal 8. Jika log 100 = x Tentukan nilai x = …. Jawab: log 100 = x  10x = 100 10x = 102 x = 2.

Latihan Soal

Soal - 1 log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235

Pembahasan log 3 = 0,477 dan log 2 = 0,301 log 18 = log 9 x 2 = log 9 + log 2 = log 32 + log 2 = 2 (0,477) + 0,301 = 0,954 + 0,301 = 1,255

Jawaban log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235 c. 1,255

Soal - 2 log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5

Pembahasan log 2 = 0,301 dan log 5 = 0,699 = log 5 + log 8 + log 25 = log 5 + log 23 + log 52 = log 5 + 3.log 2 + 2.log 5 = 0,699 + 3(0,301) + 2(0,699) = 0,699 + 0,903 + 1,398 = 3,0

Jawaban log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5 b. 3

Soal - 3 Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674

Pembahasan log 4,72 = 0,674 log 4.720 = log (4,72 x 1000) = log 4,72 + log 1000 = log 4,72 + log 103 = 0,674 + 3 = 3,674

Jawaban Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674 c. 3,674

Soal - 4 Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130

Pembahasan log 3 = 0,477 dan log 5 = 0,699. log 135 = log (27 x 5) = log 27 + log 5 = log 33 + log 5 = 3(0,477) + 0,699 = 1,431 + 0,699 = 2,130

Jawaban Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130 d. 2,130

Soal - 5 Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b

Pembahasan Diketahui log 3 = a dan log 2 = b. log 18 = log (9 x 2) = log 9 + log 2 = log 32 + log 2 = 2.log 3 + log b = 2(a) + b = 2a + b

Jawaban Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b b. 2a + b

Soal - 6 Diketahui plog 27 = 3x Maka plog 243 = …. a. 4x b. 5x c. 6x d. 7x

Pembahasan plog 27 = 3x 33 = p3x Maka: x = 1 dan p = 3 plog 243 = 3log (3)5 = 5.3log 3 = 5 . X = 5x

Jawaban Diketahui plog 27 = 3x Maka plog 243 = …. a. 4x b. 5x c. 6x d. 7x b. 5x

Soal - 7 Diketahui log 2 = 0,301 Maka log 50 = …. a. 0,699 b. 1,301 c. 1,699 d. 2,301

Pembahasan log 2 = 0,301 log 50 = log (100 : 2) = log 100 – log 2 = log 102 – log 2 = 2 – 0,301 = 1,699

Jawaban Diketahui log 2 = 0,301 Maka log 50 = …. a. 0,699 b. 1,301 c. 1,699 d. 2,301 c. 1,699

Pembahasan Soal-soal UN 2001 s.d. 2005 Terima Kasih.. Jangan Lewatkan Program Khusus Pembahasan Soal-soal UN 2001 s.d. 2005