3.

Slides:



Advertisements
Presentasi serupa
DESKRIPSI DATA Pertemuan 9 1. Pendahuluan : Sering digunakan peneliti, khususnya dalam memperhatikan perilaku data dan penentuan dugaan-dugaan yang selanjutnya.
Advertisements

BAB II ANALISA DATA.

Pertemuan 5: UKURAN PENYEBARAN DATA DAN KEMIRINGAN DIAGRAM
BAB III UKURAN PEMUSATAN
Statistik Diskriptif.
Denny Agustiawan JURUSAN TEKNIK INFORMATIKA STMIK ASIA MALANG
1. Kelompok data 2,3,5,6. Maka jangkauan? Jawab : 2. Tentukan simpangan rata- rata data 2,3,5,6 ! Jawab :
UKURAN VARIASI NAMA : Lela Nurbaya NIM : KELAS : 11.2A.05 GANJIL.
STATISTIK DESKRIPTIF Pengumpulan data, pengorganisasian, penyajian data Distribusi frekuensi Ukuran pemusatan Ukuran penyebaran Skewness, kurtosis.
UKURAN PENYEBARAN (VARIABILITAS)
Ukuran Dispersi.
Ukuran Kemiringan (Skewness) dan Ukuran Keruncingan (Kurtosis)
Modul 6 Kegiatan Belajar 1
STATISTIK 1 Pertemuan 9: Ukuran Kemencengan dan Keruncingan
UKURAN DISTRIBUSI
Ukuran Penyebaran Relatif
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = ....
Ukuran kemiringan & ukuran keruncingan
UKURAN DISPERSI.
Ukuran Pemusatan - Data Berkelompok
Kemiringan & keruncingan distribusi data
Statistika Pertemuan ke – 8 dan ke – 9.
KELOMPOK 5 KEMIRINGAN DAN KERUNCINGAN
Ukuran Dispersi.
UKURAN VARIASI NAMA :DWI INDAHSARI NIM : NO ABSEN: 52 KELAS : 11.2A.05
BAB 5 DISPERSI, KEMIRINGAN DAN KERUNCINGAN DISTRIBUSI DATA.
UKURAN PEMUSATAN DATA BERKELOMPOK
STATISTIKA DESKRIPTIF
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = Xmax – Xmin
Ukuran Dispersi, Kemiringan dan Keruncingan
Irani Yuni Napitupulu 11.2B.04.
Ukuran Gejala Pusat Data Belum Dikelompokkan
3.
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = 6 – 2 = 4
UKURAN VARIASI NAMA : Riza Wahyu Lisdyana NIM : NO ABSEN : 30
Penyajian Data Beberapa cara penyajian data antara lain dengan : Tabel
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = ...
Jawaban Latian soal Statistika Deskriptif (Ukuran Disipersi dan KemiringanKeruncingan) Ila Uswatun Hasanah AMIK Komputerisasi Akuntansi ‘BSI 11.2A.05.
Skewness dan Kurtosis Ria Faulina, M.Si.
Contoh soal kemiringan :
Statistika Deskriptif
NAMA : MUETIA WINDA ASTUTI KELAS : 11.2A.05 NIM :
Statistika Deskriptif
JANGKAUAN 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = Xmax-Xmin R = 6 – 2 = 4.
Anggie Saputri A.05 Statistika Deskriptif Ukuran Variasi
Sherent haris syahputri NIM GANJIL
KELOMPOK 5 KEMIRINGAN DAN KERUNCINGAN
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = Xmax – Xmin = 6 – 2 = 4 NIM Genap.
Statistika Deskriptif
Contoh soal kemiringan :
Deskripsi Numerik Data
Universitas Pekalongan
11.2A.05 KOMPUTERISASI AKUNTANSI
Tugas Statistik Ganjil
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = 6 – 2 = 4
STATISTIKA DESKRIPTIF
UKURAN VARIASI NAMA :ERNI INDRIYANI NIM : NO ABSEN : 19
Nama : Herwina Oktaviany Kelas : 11.2B.04 Nim :
Latihan Soal Statistika Deskriptif
Disusun Oleh: Nama :Ghina Rahmatina Kelas :11.2B.04 NIM :
Jangkauan 1. Kelompok data : 2, 3, 5, 6 maka jangkauan R = ....
BAB 4 UKURAN PENYEBARAN.
NAMA : MUETIA WINDA ASTUTI KELAS : 11.2A.05 NIM :
BAB VII UKURAN UKURAN KEMIRINGAN & KERUNCINGAN
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
DESKRIPSI DATA Pertemuan 3.
Ukuran pemusatan dan letak data
Ukuran Distribusi.
Transcript presentasi:

3

2

1

LOADING

STATISTIKA DESKRIPTIF KEMIRINGAN, KERUNCINGAN DISTRIBUSI DATA (UKURAN PENYEBARAN DATA)

Kemiringan Dan Keruncingan Distribusi Data Profil Materi Grafik Evaluasi Kemiringan Dan Keruncingan Distribusi Data Logout Stay

Wassalamualaikum Wr.Wb

Sefta Layli Uhdia Fishaum NIM: 11140711 No.Absen : 22 Seftalydiaf.wordpress.com “kalau sudah punya tujuan,ada niat,ada tekad,berusaha terus,dan semangat inshaallah sampai ”

KESIMPULAN Ada 3 jenis grafik yang dapat digunakan dalam menganalisa kemiringan atau keruncingan distribusi data. Derajat kemiringan angka 0 menunjukkan puncak normal, sedangkan derajat keruncingan angka 3 menunjukkan puncak normal.

KEMIRINGAN DISTRIBUSI DATA Merupakan derajat atau ukuran dari ketidsksimetrian (Asimetri) suatu distribusi data. Kemiringan distribusi data terdapat 3 jenis : Simetris : menunjukkan letak nilai rat-rata hitung,median dan modus berhimpit(berkisar disatu titik) Miring kekanan :mempunyai nilai modus paling kecil dan rata-rata hitung paling besar Miring kekiri :mempunyai nilai modus paling besar dan rata-rata hitung paling kecil

Grafik Distribusi Kemiringan Simetri Miring Kekanan

Grafik Distribusi Kemiringan Miring Ke Kiri Grafik Distribusi Kemiringan

Rumus Kemiringan derajat distribusi data(α3) RUMUS PEARSON α= 𝟏 𝑺 ( 𝑿 – mod ) Atau α= 𝟑 𝑺 ( 𝑿 – med ) RUMUS MOMEN *Data tidakberkelompok ∝ 𝟑 = 𝟏 𝒏 𝑺 𝟑 ∑( 𝑿 𝒊 − 𝑿 )3 *Data Berkelompok ∝ 𝟑 = 𝟏 𝒏 𝑺 𝟑 ∑ 𝒇 𝒊 ( 𝒎 𝒊 − 𝑿 )3 =

Question 6,7,8,5,8,88 5,6,7,8,8,8 Mod=8 Data : Diperoleh: = 1/6(5+6+7+8+8+8)=42/6=7 Median Med=1/2(7+8)=7,5 Modus Mod=8

Standar Deviasi diperoleh dari variansinya yaitu = Standar Deviasi diperoleh dari variansinya yaitu STANDAR DEVIASINYA = 1,2

Karna α bertanda negatif maka distribusi data miring ke kiri Rumus Pearson Karna α bertanda negatif maka distribusi data miring ke kiri

Karna α bertanda negatif maka distribusi data, miring ke kiri Rumus Momen Karna α bertanda negatif maka distribusi data, miring ke kiri

Rumus Bowley ∝ 𝟑 = 𝜶 𝟑 =𝟎 (𝑺𝒊𝒎𝒆𝒕𝒓𝒊𝒔) 𝜶 𝟑 <𝟎 (𝑴𝒊𝒓𝒊𝒏𝒈 𝒌𝒆 𝑲𝒊𝒓𝒊) 𝜶 𝟑 >𝟎 (𝑴𝒊𝒓𝒊𝒏𝒈 𝒌𝒆 𝑲𝒂𝒏𝒂𝒏)

Data : 10,15,20,25,30,35 N=6 Q2= Q1= Q2=X3+0,5 (X4-X3)

Karena α bertanda positif,maka distribusi data miring kekanan

KERUNCINGAN DISTRIBUSI DATA Merupakan derajat atau ukuran tinggi rendahnya puncak suatu distribusi data terhadap distribusi normalnya data. Disebut juga Kurtosis. Ada 3 jenis keruncingan data, yaitu: Leptokurtis: Distribusi data yg puncaknya relatif tinggi. Mesokurtis: Distribusi data yg puncaknya normal. Platikurtis: Distribusi data yg puncaknya terlalu rendah atau mendatar.

GRAFIK DISTRIBUSI KERUNCINGAN Leptokurtis Mesokurtis Mod=Med=x X Mod Med x X X

GRAFIK DISTRIBUSI KERUNCINGAN Platikurtis Med Mod x

Rumus Derajat keruncingan 𝜶 𝟒 =𝟑 𝑴𝒆𝒔𝒐𝒌𝒖𝒓𝒕𝒊𝒔 𝜶 𝟒 >𝟑 (𝑳𝒆𝒑𝒕𝒐𝒌𝒖𝒓𝒕𝒊𝒔) 𝜶 𝟒 <𝟑 (𝑷𝒍𝒂𝒕𝒊𝒌𝒖𝒓𝒕𝒊𝒔) Rumus Derajat keruncingan Data TidakBerkelompok 𝜶 𝟒 = 𝟏 𝒏 𝑺 𝟒 ∑( 𝑿 𝒊 − 𝑿 ) 𝟒 𝛂 𝟒 = 𝟏 𝐧 𝐒 𝟒 ∑ 𝐟 𝐢 ( 𝐦 𝐢 − 𝐗 ) 𝟒 Data Berkelompok