Pertemuan VIII Dimensional Modelling. Relational Database Model 31 42 22 32 FMMFFMMF Anderson Green Lee Ramos Attribute 1 Name Attribute 2 Age Attribute.

Slides:



Advertisements
Presentasi serupa
Model Kubus Data Melihat data sebagai kubus.
Advertisements

SISTEM BUKU BESAR DAN PELAPORAN
OLAP - PERTEMUAN 8 – OLAP.
Pertemuan #2 OLAP.
Lingkungan Database Bagian II
Data Warehouse dan Decision Support
OLAP dalam Data Warehouse
PRAKTIKUM BASIS DATA (4) TEKNIK INFORMATIKA UNIVERSITAS MERCU BUANA
Putu Prayogi Widyatama
Pengenalan Data Warehouse
Desain Data Warehouse (Dimensional Modelling)
SQL Part 3 Latar Belakang Desain Tabel Normalisasi Aljabar relasional
Dimensional Modeling Achmad Yasid.
Dimensional Modeling Achmad Yasid.
Data Warehousing Sistem Basis Data Lanjut Prepared by: MT. Wilson
Query Agregasi akhmadzaini.
Defining Business Requirement / Medefiniskan kebutuhan User
DATA WAREHOUSING IN SQL SERVER 2005/2008 BUSINESS INTELLIGENCE.
Dika Anjar Pratiwi Ken Mentari Tilammura Agung Wibowo.
Sumber Data untuk DW Data operasional dalam organisasi, misalnya basis data pelanggan dan produk, dan Sumber eksternal yang diperoleh misalnya melalui.
Data Warehouse, Data Mart, OLTP & OLAP
DATA WAREHOUSING IN SQL SERVER 2005/2008 BUSINESS INTELLIGENCE.
SQL 2. Database TRANSACTION Tabel yang terlibat : Customer berisi data pelanggan (nama, alamat, dll) OderInfo berisi info pemesanan oleh pelanggan (tgl.
Quiz Before UAS Perancangan database.
Dimensional Modeling (Advance)
Arsitektur Data Warehouse
SQL = Structure Query Language
SQL-Aggregate dengan Fungsi GROUP, HAVING dan subQuery
Pertemuan VII Perancangan Datawarehouse. Perancangan Datawarehouse dengan Microsoft SQL Server.
Perancangan Data Warehouse
Review. Fakultas Ilmu Komputer UI 2 Database Introduction Database vs File Processing Database Actors DBA, Database Designers, Database users, Application.
Konsep dan Teknik Data Mining
Pertemuan VI Desain Data Warehouse (Dimensional Modelling)
Desain Data Warehouse (Dimensional Modelling)
PERTEMUAN 10 QUERY KOMERSIAL LANJUTAN Agus Riyanto, S.Kom.
Surrogate Key & Slowly Changing Dimensions. SURROGATE KEY.
Informasi Dalam Praktik
DATA WAREHOUSE (2nd) Presented by HANIM M.A – M. IRWAN AFANDI.
Presented by HANIM M.A. DATA WAREHOUSE (2nd) Presented by HANIM M.A.
Pemodelan Data Dimensional dengan OLAP
BAB 4 QUERY FORMULATION with SQL
Datamart dan Datawarehouse
PEMBANDINGAN KINERJA JEDOX PALO VERSI 1. 0c DENGAN VERSI 2
SQL (Structured Query Language)
Penambahan Operasi OLAP dan Fungsi Agregat pada Temporal Data Warehouse Tanaman Pangan Kabupaten Karo Oleh : Karina Gusriani – G Pembimbing : Ibu.
Konsep Teknologi Informasi B
Defining Business Requirement / Medefiniskan kebutuhan User
Model Kubus Data Melihat data sebagai kubus.
DATA MART Pertemuan ke-3.
Operasi-Operasi pada Data Warehouse
Proses ETL (Extract-Transform-Load)
ARSITEKTUR DATA WAREHOUSE
Operator Summary Slice Dice Drill-down Roll-up Pivot
BASIS DATA TERDISTRIBUSI
Presented by HANIM M.A. DATA WAREHOUSE (2nd) Presented by HANIM M.A.
Perancangan Penyimpanan Data
Analisis Multidimensional
Oleh : Rahmat Robi Waliyansyah, M.Kom.
PRODI MIK | FAKULTAS ILMU-ILMU KESEHATAN
DATA WAREHOUSE AND OLAP TECHNOLOGI FOR DATA MINING
Konsep dan Teknik Data Mining
Introduction to Data Warehouse By: Marcello Singadji
By Galih Hermawan IF. FTIK. UNIKOM 4 October 2018.
Operasi-Operasi pada Data Warehouse Business Intelligent Ramos Somya, S.Kom., M.Cs.
Skema Star (Dalam RDBMS)
KELOMPOK 6 AGUNG BIANTORO.M ( 042 ) JONI PUTRA ( 103 ) HARIS FERDIAN ( 033 ) TEKNIK-TEKNIK DATA MINING.
Konsep Aplikasi Data Mining
LOGICAL DESIGN DW Referensi:
LOGICAL DESIGN DW Referensi:
Konsep Aplikasi Data Mining
Transcript presentasi:

Pertemuan VIII Dimensional Modelling

Relational Database Model FMMFFMMF Anderson Green Lee Ramos Attribute 1 Name Attribute 2 Age Attribute 3 Gender Row 1 Row 2 Row 3 Row 4 The table above illustrates the employee relation.

Multidimensional Database Model The data is found at the intersection of dimensions. Store GL_Line Time FINANCE Store Product Time SALES Customer

Two dimensions

Three dimensions

MOLAP (multidimensional online analytical processing) Server The application layer stores data in a multidimensional structure The presentation layer provides the multidimensional view MOLAP Engine DSS client Application layer Warehouse Efficient storage and processing Complexity hidden from the user Analysis using preaggregated summaries and precalculated measures

ROLAP (relational online analytical processing) Server The warehouse stores atomic data. The application layer generates SQL for the three- dimensional view. The presentation layer provides the multidimensional view. ROLAP engine DSS client Application layer Warehouse server Multipl e SQL

MOLAP ExpressServerExpressuserWarehouse Query Data MDDB Periodicload

ROLAP ExpressServer Expressuser Warehouse Datacache Livefetch Cache Query Data Also Hybrid (HOLAP)

Identifying Business Rules Product Type Monitor Status PC15 inchNew Server17 inchRebuilt 19 inch Custom None Location Geographic proximity miles miles > 5 miles Store Store > District > Region Time Month > Quarter > Year

Creating the Dimensional Model Identify fact tables –Translate business measures into fact tables –Analyze source system information for additional measures –Identify base and derived measures –Document additivity of measures Identify dimension tables Link fact tables to the dimension tables Create views for users

Summary Tables Example SALES FACTS SalesRegionMonth 10,000NorthJan 99 12,000SouthFeb 99 11,000North Jan 99 15,000WestMar 99 18,000South Feb 99 20,000North Jan 99 10,000EastJan 99 2,000WestMar 99 SALES BY MONTH/REGION MonthRegionTot_Sales$ Jan 99North41,000 Jan 99East10,000 Feb 99South40,000 Mar 99West17,000 SALES BY MONTH MonthTot_Sales Jan 9951,000 Feb 9940,000 Mar 9917,000

Kubus OLAP bekerja dengan data dalam bentuk multidimensi. Yang umum, bentuk tiga dimensi diwujudkan ke dalam bentuk kubus data.

14 Cube Fact table view: Multi-dimensional cube: dimensions = 2

15 3-D Cube day 2 day 1 dimensions = 3 Multi-dimensional cube:Fact table view:

16 Aggregates Add up amounts for day 1 In SQL: SELECT sum(amt) FROM SALE WHERE date = 1 81

17 Aggregates Add up amounts by day In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date

18 Another Example Add up amounts by day, product In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date, prodId drill-down rollup

19 Aggregates Operators: sum, count, max, min, median, ave Using dimension hierarchy –average by region (within store) –maximum by month (within date)

Suatu Konsep Hierarki: Dimensi (location) all EuropeNorth_America MexicoCanadaSpainGermany Vancouver M. WindL. Chan... all region office country TorontoFrankfurt city

Data Multidimensi Volume Sales sebagai suatu fungsi dari product, month, dan region Product Region Month Dimensi: Product, Location, Time Path intisari hierarkikal Industry Region Year Category Country Quarter Product City Month Week Office Day

Contoh Kubus Data Total penjualan TV Setahun di U.S.A. Date Product Country sum TV VCR PC 1Qtr 2Qtr 3Qtr 4Qtr U.S.A Canada Mexico sum

Bentuk Kubus Yang Terkait Dengan Kubus Data all product date country product,date product,countrydate, country product, date, country 0-D(apex) cuboid 1-D cuboids 2-D cuboids 3-D(base) cuboid

Model Kubus Data Melihat data sebagai kubus

Operasi Kubus Data OLAP Roll up (drill-up): merujuk ke peningkatan hierarki atau pengurangan dimensi (diberikan total sales by “city”, di roll-up untuk mendapatkan total sales by “state”) Drill down (roll down, kebalikan roll-up): merujuk ke penurunan hierarki atau penambahan dimensi (diberikan total sales by “state”, di roll-down untuk mendapatkan total sales by “city”)

Operasi Kubus Data OLAP

Slice: merujuk ke pemilihan dimensi yang digunakan untuk melihat kubus (“customer” by “product” by “date”) Dice: merujuk ke pemilihan posisi sesungguhnya sepanjang dimensi Pivot (rotasi): reorientasi kubus, visualisasi, 3D ke sebarisan bidang 2D

Operasi Kubus Data OLAP

Contoh Kubus Data