Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Crystal Structure.

Presentasi serupa


Presentasi berjudul: "Crystal Structure."— Transcript presentasi:

1 Crystal Structure

2 Definisi Kristal Kristal merupakan zat padat akan tetapi zat padat tidak selalu berstruktur kristal Zat padat dikatakan berstruktur kristal jika atom-atom penyusunnya tertata secara teratur dan periodik Ilustrasi struktur kristal dalam gambaran dua dimensi T merupakan Vektor Translasi A, B, dan C adalah atom Penyusun kristal a1 adalah jarak antara atom

3 Kisi Kristal Sebuah kristal memiliki simetri translasi-menurut definisi. Jika r (r) adalah rapat elektron dalam kristal di r maka ada 3 vektor a, b & c  sehingga: r (r) = r (r + u · a + v · b + w · c) dengan u, v & w integer. Setiap bentukan identik dinamakan unit cell. a, b & c = vektor sel satuan. Panjang vektor sel satuan a = |a|, b = |b|, c = |c|. α, β & γ = sudut-sudut antara vektor 2 sel satuan. Right handed coordinate system.

4 Koordinat Fraksional Sembarang posisi di dalam kristal dapat dinyatakan: r = (u + x)· a + (v + y)· b + (w + z)· c dengan u, v & w integer & 0 < x, y, z < 1. x, y & z disebut “fractional coordinates” & menyatakan posisi di dalam sel satuan. a b c

5 Sistem Kristal Struktur kristal dapat digambarkan dalam bentuk kisi, dimana: Setiap titik kisi akan ditempati oleh atom atau sekumpulan atom Kisi kristal memiliki sifat geometri yang sama seperti kristal Kisi yang memiliki titik-titik kisi yang ekuivalen disebut kisi Bravais sehingga titik-titik kisi tersebut dalam kristal akan ditempati oleh atom-atom yang sejenis Titik A, B dan C adalah ekuivalen satu sama lain Titik A dan A1 tidak ekivalen (non-Bravais)

6 Point, Plane and Space Groups
Point Groups = Collection (group) of symmetry operators that all pass through the same point. The group must be closed, have an identity element, and every element must have an inverse. There are 32 unique ways in which lattice points can be arranged in space. Plane Groups = Group of symmetry operators that are compatible with two-dimensional symmetry in a plane. Space Groups = Collections of symmetry operators that are compatible with three-dimensional crystallographic (i.e. translational) symmetry. There are 230 space groups. Because protein and nucleic acid molecules are chiral, there are only 65 “biological” space groups.

7

8 Sistem Kristal Titik-titik kisi Bravais dapat ditempati oleh atom atau sekumpulan atom yang disebut basis Kisi Sekumpulan titik-titik yang tersusun secara periodik dalam ruang Basis Atom atau sekumpulan atom Sehingga apabila atom atau sekumpulan atom tersebut menempati titik-titik kisi maka akan membentuk suatu struktur kristal

9

10 Bravais Lattices 7 UNIT CELL TYPES + 4 LATTICE TYPES = 14 BRAVAIS LATTICES

11

12

13 Lattice Planes Useful concept for crystallography & diffraction
Think of sets of planes in lattice - each plane in set parallel to all others in set. All planes in set equidistant from one another Infinite number of set of planes in lattice d d-interplanar spacing

14 Lattice Planes Keep track of sets of planes by giving them names - Miller indices (hkl)

15 Miller Indices (hkl) Choose cell, cell origin, cell axes: origin b a

16 Miller Indices (hkl) Choose cell, cell origin, cell axes
Draw set of planes of interest: origin b a

17 Miller Indices (hkl) Choose cell, cell origin, cell axes
Draw set of planes of interest Choose plane nearest origin: origin b a

18 Miller Indices (hkl) Choose cell, cell origin, cell axes
Draw set of planes of interest Choose plane nearest origin Find intercepts on cell axes: 1,1,∞ origin b 1 a 1

19 Miller Indices (hkl) Choose cell, cell origin, cell axes
Draw set of planes of interest Choose plane nearest origin Find intercepts on cell axes 1,1,∞ Invert these to get (hkl) (110) origin b 1 a 1

20 Lattice Planes Exercises

21 Lattice Planes Exercises

22 Lattice Planes Exercises

23 Lattice Planes Exercises

24 Lattice Planes Exercises

25 Lattice Planes Exercises

26 Lattice Planes Exercises

27 Lattice Planes Exercises

28 Indeks Bidang: Kristal Kubik

29 Bidang 001

30 Bidang-bidang 111

31 Bidang-bidang 110

32 Jarak Antar Bidang Kristal Kubik

33

34 Jarak Antar Bidang

35 Volume Sel Satuan

36 Sudut Antar Bidang

37 Arah Bidang Kristal Kubik

38 Lattice Planes Exercises

39 Lattice Planes Exercises

40 Lattice Planes Exercises

41 Lattice Planes Exercises

42 Lattice Planes Exercises

43 Lattice Planes Exercises

44 Lattice Planes Exercises

45 Lattice Planes Two things characterize a set of lattice planes:
interplanar spacing (d) orientation (defined by normal)

46 A1 (FCC/CCP, Struktur Cu)
Berapa: Jumlah atom terdekat? Fraksi okupansi atom

47 A2 (BCC, Struktur W) Berapa: Jumlah atom terdekat?
Fraksi okupansi atom

48 A3 (HCP, Struktur Mg) Berapa: Jumlah atom terdekat?
Fraksi okupansi atom

49 B1 (Struktur Halite)

50 C2 (Struktur Rutile)

51 Latihan Gambarkan struktur kristal fluorite.

52 Strange Indices For hexagonal lattices - sometimes see 4-index
notation for planes (hkil) where i = - h - k a3 a1 a2 (110) (1120)

53 Zones 2 intersecting lattice planes form a zone zone axis zone axis zone axis [uvw] is ui + vj + wk i j k h1 k1 l1 h2 k2 l2 plane (hkl) belongs to zone [uvw] if hu + kv + lw = 0 if (h1 k1 l1) and (h2 k2 l2 ) in same zone, then (h1+h2 k1+k2 l1+l2 ) also in same zone.

54 zone axis [uvw] is ui + vj + wk
Zones Example: zone axis for (111) & (100) - [011] zone axis [uvw] is ui + vj + wk i j k h1 k1 l1 h2 k2 l2 i j k (100) (111) [011] (011) in same zone? hu + kv + lw = 0 0·0 + 1·1 - 1·1 = 0 if (h1 k1 l1) and (h2 k2 l2 ) in same zone, then (h1+h2 k1+k2 l1+l2 ) also in same zone.

55 Reciprocal lattice Real space lattice

56 Real space lattice - basis vectors
Reciprocal lattice Real space lattice - basis vectors a a

57 Real space lattice - choose set of planes
Reciprocal lattice Real space lattice - choose set of planes (100) planes n100

58 Real space lattice - interplanar spacing d
Reciprocal lattice Real space lattice - interplanar spacing d (100) planes d100 1/d100 n100

59 Real space lattice  the (100) reciprocal lattice pt
planes d100 n100 (100)

60 Reciprocal lattice The (010) recip lattice pt n010 (100) planes d010

61 The (020) reciprocal lattice point
planes d020 (010) (020) (100)

62 More reciprocal lattice points
(010) (020) (100)

63 The (110) reciprocal lattice point
(100) planes n110 d110 (010) (020) (100) (110)

64 Still more reciprocal lattice points
(100) planes (010) (020) (100) the reciprocal lattice (230)

65 Reciprocal lattice Reciprocal lattice notation

66 Reciprocal lattice Reciprocal lattice for hexagonal real space lattice

67 Reciprocal lattice Reciprocal lattice for hexagonal real space lattice

68 Reciprocal lattice Reciprocal lattice for hexagonal real space lattice

69 Reciprocal lattice Reciprocal lattice for hexagonal real space lattice

70 Reciprocal lattice

71 Contoh Soal 1. Wolfram membentuk kristal kubus berpusat badan . Dari fakta bahwa rapat massa wolfram 19,3 gr/cm3. Hitung a. Panjangnya sisi sel satuan b. Jarak antar bidang 222

72 2. Insulin membentuk kristal dari jenis orthorombik dengan dimensi sel satuan 13 x 7,48 x 3,09 nm. Bila rapat massa kristal adalah 1,315 g/cm3 dan terdapat enam molekul insulin per sel satuan, berapa massa molar dari protein insulin. 3. Molibdenum membentuk kristal kubus berpusat badan dan pd suhu 20° C rapat massanya 10,3 gr/cm3. Hitung jarak antara pusat-pusat atom molibdenum yg berdekatan.


Download ppt "Crystal Structure."

Presentasi serupa


Iklan oleh Google