Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
BILANGAN REAL BILANGAN BERPANGKAT
2
REAL NUMBERS EXSPONENT NUMBERS
3
Properties of the Exponent Numbers
2 2 2 2 ... 2 Symbolized by 2n Factor n 3 3 3 3 ... 3 Symbolized by 3n Factor n 8 8 8 8 ... 8 Symbolized by 8n Factor n Defined by: 1) an = a a a a a Factor n 2) a1 = a Hal.: 3 BILANGAN REAL
4
Sifat-sifat Bilangan Berpangkat
2 2 2 2 ... 2 Dilambangkan dengan 2n Faktor n 3 3 3 3 ... 3 Dilambangkan dengan 3n Faktor n 8 8 8 8 ... 8 Dilambangkan dengan 8n Faktor n Definisi: 1) an = a a a a a Faktor n 2) a1 = a Hal.: 4 BILANGAN REAL
5
Multiplication of the Exponent Numbers
a a a … a a a a … a p factor number a q factor number a (p + q) factor number a means ap+q ap aq = ap+q Example : x5 x 12= x5+12 = x17 32 33 = = 35 76 713= = 719 Hal.: 5 BILANGAN REAL
6
Perkalian Bilangan Berpangkat
a a a … a a a a … a p faktor number a q faktor number a (p + q) faktor bilangan a berarti ap+q ap aq = ap+q Contoh : x5 x 12= x5+12 = x17 32 33 = = 35 76 713= = 719 Hal.: 6 BILANGAN REAL
7
The Division of Exponent Number
ap = ap-q, a = 0 aq Examples : : 52 = = 52 = 25 2. Hal.: 7 BILANGAN REAL
8
Pembagian Bilangan Berpangkat
ap = ap-q, a = 0 aq Contoh : : 52 = = 52 = 25 2. Hal.: 8 BILANGAN REAL
9
The Exponentiation of Exponent Number
(ap)2 = ap, ap, ap … ap… q factor = ap.q So (ap)q = ap.q Examples : 1. (52)3 = (5)2.3 = 56 = 15625 2. = 33 = 27 Hal.: 9 BILANGAN REAL
10
Perpangkatan Bilangan Berpangkat
(ap)2 = ap, ap, ap … ap… q factor = ap.q ap.q Jadi (ap)q = Jadi : 1. (52)3 = (5)2.3 = 56 = 15625 = 33 = 27 2. Hal.: 10 BILANGAN REAL
11
The Exponent of Double Multiplication or Numbers Greater
(ab)p = (ab) (ab) (ab) . . . (ab) p factor (ab) = (a b) (a b) (a b) (a b) p factor a and p factor b = (a a a . . . a) (b b b . . . b) According to definition According to definition p faktor a p faktor a p factor a p faktor b p faktor b p factor b = ap bp = apbp So (ab)p =apbp Examples : (3 7)5 = = 3575 = (2 2 3)5 = 25 25 35 = 210 35 = 21035 Hal.: 11 BILANGAN REAL
12
Perpangkatan dari perkalian dua atau lebih bilangan
(ab)p = (ab) (ab) (ab) . . . (ab) p faktor (ab) = (a b) (a b) (a b) (a b) p factor a and p factor b = (a a a . . . a) (b b b . . . b) menurut definisi menurut definisi p faktor a p faktor a p factor a p faktor b p faktor b p factor b ap bp = = apbp Jadi (ab)p =apbp Contoh : (3 7)5 = = 3575 = (2 2 3)5 = 25 25 35 = 210 35 = 21035 Hal.: 12 BILANGAN REAL
13
The Exponent Fraction Numbers
a a a a a a … a _______________________ = a a a... a ap : aq = (p >q) a a a … a p – q factor q factor number a = athe exponent ? Means ap : aq = ap ‑ q = ap-q Examples : 36 : 34 = 36 ‑ 4 = 32 713 : 78 = 713-8 = 75 Hal.: 13 BILANGAN REAL
14
Perpangkatan Bilangan Pecahan
a a a a a a … a _______________________ = a a a... a ap : aq = (p >q) a a a … a p – q factor q faktor bilangan a = apangkat berapa ? = ap-q ap : aq = ap ‑ q Berarti Contoh : 36 : 34 = 36 ‑ 4 = 32 713 : 78 = 713-8 = 75 Hal.: 14 BILANGAN REAL
15
The Exponent Fraction Numbers
p factor p factor number a a a a a a a … a ap _______________________ ____ = = b b b b b b … b bp p factor number b ap So : ____ bp Hal.: 15 BILANGAN REAL
16
Perpangkatan Bilangan Pecahan
p faktor p faktor bilangan a a a a a a a … a ap _______________________ ____ = = b b b b b b … b bp p faktor bilangan b ap Jadi : ____ bp Hal.: 16 BILANGAN REAL
17
Zero Exponent Number If p, q are positive integer anumber and p = q then ap-q = a0 To determine the value of zero exponent number, look at this explanation below! a0 = ap-p ap = ap = 1 So, for every a R and a = 0 then we have a0 = 1 Hal.: 17 BILANGAN REAL
18
Bilangan Berpangkat Nol
Jika p, q bilangan bulat positif dan p = q dan ap-q = a0 Untuk menentukan nilai dari bilangan pangkat nol, perhatikan uraian berikut: a0 = ap-p ap = ap = 1 Jadi, untuk setiap a R dan a = 0 berlaku a0 = 1 Hal.: 18 BILANGAN REAL
19
The Negative Exponent Number
ap = a0-p = a-p 1 a-p = ap a0 1 ap = ap So, for every a R, a = 0, and positive integer number then we have a-p = or ap = 1 a-p Examples : 1 5 = 2. Hal.: 19 BILANGAN REAL
20
Bilangan Berpangkat Negatif
ap = a0-p = a-p 1 a-p = ap a0 1 ap = ap Jadi, untuk setiap a R, a = 0, dan p bilangan bulat positif berlaku a-p = dan ap = 1 a-p Contoh : 1 5 = 2. Hal.: 20 BILANGAN REAL
21
Fraction Exponent Numbers
The exponent number of which is exponent by n can be rationalize as follows : (a ) p q q p q p q p q p q = a , a , a , … a as much as q a q. p q = ap = p (a ) q = is degined as exponent root at q from ap, then p = a q Hal.: 21 BILANGAN REAL
22
Bilangan Berpangkat Pecahan
Bilangan berpangkat yang yang dipangkatkansebesar n dapat ditulis sebagai berikut: (a ) p q = p q a , a , a , … a as much as q = a q. p q ap = (a ) p q = Diartikan sebagai akar pangkat ke-q dari ap, sehingga: p a q = Hal.: 22 BILANGAN REAL
23
Fraction Exponent Numbers
Examples : 1. 2. 3. 4. Hal.: 23 BILANGAN REAL
24
Bilangan Berpangkat Pecahan
Contoh : 1. 2. 3. 4. Hal.: 24 BILANGAN REAL
25
The Properties of Exponent Numbers Operation
If a, b are real numbers, and p, q are integer numbers, then : ap aq = ap+q ap : aq = ap-q ; a 0 (ap)q = apq (ab)p = ap bp . a-p = ; a 0. a0 = 1, a 0 b ; b 0 Hal.: 25 BILANGAN REAL
26
Sifat Operasi Bilangan Berpangkat
Jika a, b adalah bilangan real dan p, q adalah bilangan bulatb maka : ap aq = ap+q ap : aq = ap-q ; a 0 (ap)q = apq (ab)p = ap bp ; b 0 a-p = ; a 0. a0 = 1, a 0 b asal q a p p/q = terdefinisi Hal.: 26 BILANGAN REAL
27
Roots Examples : Meanwhile : Because : 1. The Definition of Roots
As we have discussed before, that Roots are numbers in the root symbol which cannot produce rational numbers Examples : Meanwhile : Because : 1, 2, and 8 are not irrational numbers Hal.: 27 BILANGAN REAL
28
Bentuk Akar Examples : Meanwhile : Because : 1. Definisi Bentuk Akar
Seperti yang sudah dibahas pada sub bab sebelumnya, bahwa Bentuk akar adalah bilangan –bilangan di bawah tanda akarnya tidak dapat menghasilkan bilangan Rasional. Examples : 1, 2, and 8 are not irrational numbers Meanwhile : Because : Hal.: 28 BILANGAN REAL
29
Roots 2. Simplifying Roots
Roots can be simplified by changing the number in the root into two numbers which one of them can be rooted and the other can not be rooted. Examples : 1. 2. Hal.: 29 BILANGAN REAL
30
Bentuk Akar 2. Menyederhanakan Bentuk Akar
Bentuk akar dapat disederhanakan dengan cara mengubah bilangan di dalam akar tersebut menjadi dua bilangan dimana bilangan yang satu dapat diakarkan sedang bilangan yang lain tidak dapat diakarkan. Contoh : 1. 2. Hal.: 30 BILANGAN REAL
31
Roots 3. Root Operation Operation base for a ≥ 0 and b ≥ 0
Addition and subtraction can be simplified if the roots are the same kind. Example : = = = Multiplication of roots using properties Examples : 1. 2. Hal.: 31 BILANGAN REAL
32
Bentuk Akar 3. Operasi Bentuk Akar Dasar Operasi untuk a ≥ 0 dan b ≥ 0
real a if asal a, n = Pejumlahan dan pengurangan dapat disederhanakan apabila akar-akar sejenis. Contoh : = = = Perkalian bentuk akar dengan menggunakan sifat Contoh : 1. 2. Hal.: 32 BILANGAN REAL
33
Roots Division of Roots (i) form Examples : 1. 2. Hal.: 33
BILANGAN REAL
34
Bentuk Akar Pembagian Bentuk Akar (i) Bentuk Contoh : 1. 2. Hal.: 34
BILANGAN REAL
35
Roots (ii) form Examples : 1. = = = = = 2. = = = = Hal.: 35
BILANGAN REAL
36
Bentuk Akar (ii) Bentuk Contoh : 1. = = = = = 2. = = = = Hal.: 36
BILANGAN REAL
37
Roots (iii) form Example : = = = = Hal.: 37 BILANGAN REAL
38
Bentuk Akar (iii) Bentuk Contoh : = = = = Hal.: 38 BILANGAN REAL
39
Roots 4. Solving the exponent equation Properties used : ap = aq p = q
Examples : Find the values of x that satisfy the following equations : 1. = 64 2. = Hal.: 39 BILANGAN REAL
40
Bentuk Akar 4. Menyelesaikan persamaan dalam bentuk pangkat
Sifat yang digunakan : ap = aq p = q = Contoh : Carilah nilai x yang memenuhi persamaan di bawah ini: 1. = 64 2. = Hal.: 40 BILANGAN REAL
41
Roots ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Answer : = 1. = 64 2. = 43 = 3x = 3 = x = 1 =
Hal.: 41 BILANGAN REAL
42
Bentuk Akar ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Jawab : = 1. = 64 2. = 43 = = 3x 3 = = =
Hal.: 42 BILANGAN REAL
43
Logarithm alog b = c ac = b by a > 0 , a 1 and b > 0
Look at : ab = c ab = …. find the result of exponent …b = c find the exponent root of b from c a... = c find the exponent from a, so that the result is c = find the logarithm of base a from c number = alog c = … alog b = c ac = b by a > 0 , a 1 and b > 0 a. Is base logarithm number b. Is number written in logarithm Hal.: 43 BILANGAN REAL
44
Logaritma alog b = c ac = b dengan a > 0 , a 1 dan b > 0
Perhatikan : ab = c ab = …. Mencari hasil pemangkatan …b = c mencari akar pangkat b dari c a... = c mencari pangkat dari a, agar hasilnya c = mencari logarima dengan pokok a dari bilangan c = alog c = … alog b = c ac = b dengan a > 0 , a 1 dan b > 0 a. Disebut bilangan pokok logaritma b. Disebut bilangan yang ditulis dalam bentuk logaritma Hal.: 44 BILANGAN REAL
45
Logarithm The Properties
If a > 0 , a 1 , m > 0 , n > 0 and x R, then : alog ax = x alog (m.n) = alog m + alog n alog (m/n) = alog m - alog n alog mx = x. alog m alog m = If g > 0 , g 1 etc. an log b = alog b an log bm = alog b Hal.: 45 BILANGAN REAL
46
Logaritma Sifat-siifat
Jika a > 0 , a 1 , m > 0 , n > 0 dan x R, then : alog ax = x alog (m.n) = alog m + alog n alog (m/n) = alog m - alog n alog mx = x. alog m alog m = jika g > 0 , g 1 etc. an log b = alog b an log bm = alog b Hal.: 46 BILANGAN REAL
47
Logarithm Examples : = 3 = 3 = = = = 5 = = = 1 = = = = = = = = = = =
1. = 3 2. = 3 3. = 4. = = = 5 5. = = = 1 6. = = = 12 7. = = 8. = = = 1 9. = = = 6 Hal.: 47 BILANGAN REAL
48
Logaritma Contoh : = 3 = 3 = = = = 5 = = = 1 = = = = = = = = = = = 1.
2. = 3 3. = 4. = = = 5 5. = = = 1 6. = = = 12 7. = = 8. = = = 1 9. = = = 6 Hal.: 48 BILANGAN REAL
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.