Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Presentasi serupa


Presentasi berjudul: ""β€” Transcript presentasi:

1 𝑝= β„Žπ‘“ 𝑐 Wave Properties of Particles ( de Broglie Waves)
Remember photon case 𝑝= β„Žπ‘“ 𝑐 De Broglie: it is not only for photon but also for all particles 𝑝= π‘šπ‘£ 1βˆ’ 𝑣 2 / 𝑐 2 πœ†= β„Ž 1βˆ’ 𝑣 2 / 𝑐 2 π‘šπ‘£

2 Wave Equation 𝑦 π‘₯,𝑑 =𝐴 cos (πœ”π‘‘βˆ’π‘˜π‘₯)
Angular frequency of de Broglie waves πœ”=2πœ‹π‘“=2πœ‹π‘š 𝑐 2 /β„Ž 1βˆ’ 𝑣 2 / 𝑐 2 Note: β„Žπ‘“=π‘š 𝑐 2 / 1βˆ’ 𝑣 2 / 𝑐 2 Wave number of de Broglie waves π‘˜= 2πœ‹ πœ† = 2πœ‹π‘šπ‘£ β„Ž 1βˆ’ 𝑣 2 / 𝑐 2

3 de Broglie wave velocity
For a particle moves with velocity of v Group velocity 𝑣 𝑔 = π‘‘πœ” π‘‘π‘˜ = π‘‘πœ” 𝑑𝑣 / π‘‘π‘˜ 𝑑𝑣 =v Phase velocity 𝑣 𝑝 = πœ” π‘˜

4 Electron Diffraction Contoh:
Elektron dengan energi 54 eV menumbuk nikel. a. Hitung panjang gelombang de Broglie b. Bandingkan dengan pengukuran X-ray Berdasarkan x-ray diffraction, lattice spacing atom d= 0,91 A dan sudut diffraksi 65

5 Particle in a box πœ† 𝑛 = 2𝐿 𝑛 𝐸 𝑛 = 𝑛 2 β„Ž 2 /8π‘š 𝐿 2
The quantization energy of trapped particle πœ† 𝑛 = 2𝐿 𝑛 𝐸𝐾= 1 2 π‘š 𝑉 2 = (π‘š 𝑉) 2 2π‘š = β„Ž 2 /2π‘š πœ† 2 𝐸 𝑛 = 𝑛 2 β„Ž 2 /8π‘š 𝐿 2

6 Wave packet

7 Uncertainty Principle
Ξ”π‘₯= 1 2 πœ†

8 Uncertainty Formalism
Ξ”π‘₯ Δ𝑝 β‰₯ ℏ/2 Δ𝐸 Δ𝑑 β‰₯ ℏ/2


Download ppt ""

Presentasi serupa


Iklan oleh Google