Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Pembelajaran M a t e m a t i k a ....

Presentasi serupa


Presentasi berjudul: "Pembelajaran M a t e m a t i k a ...."— Transcript presentasi:

1 Pembelajaran M a t e m a t i k a ....
“ Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya…” (QS Yunus:5 ) QS Al Isra’ : 12 & 14 

2 MATEMATIKA SMU Kelas I – Semester 1 BAB 1
Bentuk Pangkat, Akar, dan Logaritma BAB 2 Persamaan dan Fungsi Kuadrat BAB 3 Sistem Persamaan Linier dan Kuadrat BAB 4 Pertidaksamaan Kita bahas bersama, yuk !!!

3 Persamaan dan Fungsi Kuadrat Bentuk Umum Persamaan Kuadrat
BAB 2 Persamaan dan Fungsi Kuadrat 2-1 Bentuk Umum Persamaan Kuadrat Siswa dapat:  Menjelaskan model matematika berbentuk persamaan kuadrat  Menjelaskan arti penyelesaian suatu persamaan khususnya penyelesaian persamaan kuadrat

4 PERSAMAAN KUADRAT ax2 + bx + c = 0 2-1 Bentuk Umum Persamaan Kuadrat
Bentuk umum atau Bentuk Baku persamaan kuadrat adalah: ax2 + bx + c = 0 Dengan a,b,c  R dan a  0 serta x adalah peubah (variabel) a merupakan koefisien x2 b merupakan koefisien x c adalah suku tetapan atau konstanta

5 Contoh 1: Tentukan nilai a, b, dan c dari persamaan kuadrat berikut: a. x2 – 3 = 0 c x2 - 6x = 0 b. 5x2 + 2x = 0 d. 12x – 5 + 3x2 = 0 Jawab: a. x2 – 3 = 0 Jadi a = , b = , dan c = 1 -3 b. 5x2 + 2x = 0 Jadi a = , b = , dan c = 5 2 c x2 - 6x = 0 Jadi a = , b = , dan c = 1 -6 10 d. 12x – 5 + 3x2 = 0 Jadi a = , b = , dan c = 3 12 -5

6 Contoh 2: Nyatakan dalam bentuk baku, kemudian tentukan nilai a, b dan c dari persamaan : a. 2x2 = 3x - 8 C. 2x - 3 = b. x2 = 2(x2 – 3x + 1) Jawab: a. 2x2 = 3x – 8 Kedua ruas ditambah dengan –3x + 8 2x2 – 3x + 8 = 3x – 8 – 3x + 8 2x2 – 3x + 8 = Jadi, a = , b = dan c = 2 -3 8

7 Jawab: b. x2 = 2(x2 – 3x + 1) x2 = 2x2 – 6x + 2
Kedua ruas dikurangi dengan x2 x2 - x2 = 2x2 – 6x + 2 - x2 0 = x2 – 6x + 2 x2 – 6x + 2 = 0 Jadi a = , b = , dan c = 1 -6 2 c. 2x - 3 = Kedua ruas dikalikan dengan x (2x – 3)x = 5 2x2 – 3x = 5 2x2 – 3x – 5 = 0 Jadi a = , b = , dan c = 2 -3 -5

8 Ingat .… = ??? (a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2
(a + b)(p + q) = ap + bp + aq + bq (a + b)(a - b) = a2 - b2 = ??? (x - 3)2

9 Buku Matematika SMU Latihan 1, hal 78 …
Nyatakan ke dalam bentuk baku persamaan kuadrat, kemudian tentukan nilai a, b, dan c! f. – x = 4 a. x2 = 4 – 3x b. (x – 1)2 = x - 2 g. c. (x + 2)( x – 3) = 5 d. (2 - x)( x + 3) = 2(x – 3) h. e. (x + 2)2 – 2(x + 2) + 1 = 0 Buku Matematika SMU Latihan 1, hal 78 …

10 Selamat Mengerjakan .... “ Barangsiapa yang bersungguh-sungguh, pasti ia akan berhasil “ ( Al- hadits ) “ Sesungguhnya disamping kesulitan ada kemudahan“ ( Qs Al Insyraah: 5-6 )

11 Pembahasan …. b. (x – 1)2 = x - 2 x2 – 2x + 1 = x – 2
Kedua ruas ditambahkan dengan –x + 2 x2 – 2x + 1 -x + 2 = x – 2 -x + 2 x2 – 3x + 3 = Jadi a = , b = , dan c = 1 -3 3 g. d. (2 - x)( x + 3) = 2(x – 3) _________________ x(x-1) 2x – x x = 2x – 6 2(x – 1) = 3x + 1 x(x – 1) …??? –x2 - x + 6 = 2x – 6 2x – 2 = 3x + x2 - x –x2 - 3x + 12 = 0 2x – 2 = 2x + x2 …??? Jadi a = , b = , dan c = -1 -3 12 0 = X2 + 2 X2 + 2 = Jadi a = , b = , dan c = 1 2


Download ppt "Pembelajaran M a t e m a t i k a ...."

Presentasi serupa


Iklan oleh Google