Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

UKURAN PEMUSATAN DAN UKURAN LETAK

Presentasi serupa


Presentasi berjudul: "UKURAN PEMUSATAN DAN UKURAN LETAK"— Transcript presentasi:

1 UKURAN PEMUSATAN DAN UKURAN LETAK
MATERI PERTEMUAN 2 UKURAN PEMUSATAN DAN UKURAN LETAK

2 UKURAN PEMUSATAN DEFINISI :
Ukuran pemusatan adalah nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari data. Ukuran pemusatan menunjukkan pusat dari nilai data. Yang termasuk ukuran pemusatan yaitu : rata-rata hitung (mean), median, modus dan ukuran letak.

3 UKURAN LETAK Ukuran letak adalah ukuran yang menunjukkan pada bagian mana data tsb terletak pada suatu data yang sudah diurutkan. Yang termasuk ukuran letak : kuartil, desil dan persentil.

4 RATA-RATA HITUNG Rata-rata hitung merupakan nilai yang diperoleh dengan menjumlahkan semua nilai data dan membaginya dengan jumlah data. Rata-rata hitung merupakan nilai yang menunjukkan pusat dari nilai data dan merupakan nilai yang dapat mewakili dari keterpusatan data.

5 RATA-RATA HITUNG POPULASI
Rata-rata hitung populasi merupakan nilai rata-rata dari data populasi. Populasi adalah semua hal, objek atau orang yang ingin dipelajari. Contoh populasi : populasi saham pilihan bulan Juni di BEJ sebanyak 20 emiten, populasi pengusaha rotan di Sulawesi Selatan yang terdiri atas 35 anggota. Rumus rata-rata hitung populasi :

6 RUMUS RATA-RATA HITUNG POPULASI
Dimana : µ (dibaca miu) : rata-rata hitung populasi ∑ (sigma) : simbol dari operasi penjumlahan X : nilai data yang berada dalam populasi. N : jumlah total data atau pengamatan dalam populasi ∑X : jumlah dari keseluruhan nilai X (data) dalam populasi.

7 RATA-RATA HITUNG SAMPEL
Sampel adalah suatu bagian atau proporsi dari populasi tertentu yang menjadi kajian atau perhatian. Rumus rata-rata sampel : Dimana : (dibaca eks bar): rata-rata hitung sampel ∑ : simbol dari operasi penjumlahan X : nilai data yang berada dalam sampel n : jumlah total data atau pengamatan dari sampel ∑X : jumlah dari keseluruhan nilai X (data) dari sampel

8 RATA-RATA HITUNG TERTIMBANG
Rata-rata hitung tertimbang adalah suatu nilai yang diperoleh dari suatu kelompok data yang dinyatakan sebagai X1, X2, X3,…,Xn berturut-turut ditimbang dengan bobot W1, W2, W3,…Wn. Dimana : : rata-rata hitung tertimbang ∑ : simbol dari operasi penjumlahan X : nilai data yang berada dalam populasi/sampel n : jumlah total data atau pengamatan dari populasi/sampel w : nilai bobot dari suatu data

9 RATA-RATA DATA BERKELOMPOK
Data berkelompok adalah data yang sudah dikelompokkan dalam bentuk distribusi frekuensi. Dimana : : rata-rata hitung data berkelompok ∑ : simbol dari operasi penjumlahan f : frekuensi masing-masing kelas X : nilai tengah masing-masing kelas fX : Hasil perkalian antara frekuensi dan nilai tengah masing- masing kelas ∑fX : Jumlah dari seluruh hasil perkalian antara frekuensi dan nilai tengah masing-masing kelas n : jumlah total data atau pengamatan

10 MEDIAN Median adalah titik tengah dari semua nilai data yang telah diurutkan dari nilai yang terkecil ke yang terbesar, atau sebaliknya dari yang terbesar ke yang terkecil.

11 MEDIAN UNTUK DATA TIDAK BERKELOMPOK
Cara mencari letak dan nilai median untuk data tidak berkelompok : Letak dari median dapat dicari dengan rumus (n+1)/2 Apabila jumlah datanya ganjil, maka nilai median merupakan nilai yang letaknya di tengah data. Apabila jumlah datanya genap, maka nilai median merupakan nilai rata-rata dari dua data yang letaknya berada di tengah.

12 MEDIAN UNTUK DATA BERKELOMPOK
Dimana : Md : nilai median L : batas bawah atau tepi kelas dimana median berada n : jumlah total frekuensi Cf : frekuensi kumulatif sebelum kelas median berada f : frekuensi dimana kelas median berada i : besarnya interval kelas

13 MODUS Modus adalah suatu nilai pengamatan yang paling sering muncul.
Kelebihan modus sebagai ukuran pemusatan : Mudah ditemukan, dapat digunakan untuk semua skala pengukuran, serta tidak dipengaruhi oleh nilai ekstrem. Kelemahan modus sebagai ukuran pemusatan : kadang kala sekumpulan data tidak mempunyai modus, sehingga semua data dianggap modus, kadang kala sekumpulan data memiliki modus lebih dari satu. Oleh sebab itu, sebagai salah satu alat ukur, modus relatif jarang digunakan dibandingkan dengan rata- rata hitung dan median.

14 Cara mencari nilai modus :
Untuk data tidak berkelompok, maka modus adalah nilai yang paling sering muncul atau frekuensi yang paling banyak. Untuk data berkelompok, maka modus diperoleh dari rumus sbb : Dimana : Mo : nilai modus L : batas bawah atau tepi kelas dimana modus berada d1 : selisih frekuensi kelas modus dengan kelas sebelumnya d2 : selisih frekuensi kelas modus dengan kelas sesudahnya i : besarnya interval kelas

15 HUBUNGAN RATA-RATA HITUNG, MEDIAN DAN MODUS
Hubungan ketiga ukuran dengan bentuk kurva poligon dapat dibuat menjadi 3 jenis : 1. Kurva simetris 2. Kurva condong ke kiri

16 HUBUNGAN RATA-RATA HITUNG, MEDIAN DAN MODUS
3. Kurva condong ke kanan Untuk kasus kurva yang normal atau simetris, maka terdapat hubungan antara rata-rata hitung, median dan modus : Modus = rata-rata hitung – 3(rata-rata hitung – median) Rata-rata hitung = {3(median) – modus}/2 Median = {2(rata-rata hitung) + modus}/3

17 Data Tidak Berkelompok
UKURAN LETAK Ukuran letak meliputi kuartil, desil dan persentil. Kuartil adalah ukuran letak yang membagi data yang telah diurutkan atau data yang berkelompok menjadi 4 bagian sama besar, atau setiap bagian dari kuartil sebesar 25%. Ukuran Letak Rumus Ukuran Letak Data Tidak Berkelompok Data Berkelompok Kuartil 1 (K1) [1(n+1)]/4 1n/4 Kuartil 2 (K2) [2(n+1)]/4 2n/4 Kuartil 3(K3) [3(n+1)]/4 3n/4

18 Kuartil Apabila letak kuartil berupa pecahan, atau tidak ada nilai yang pas pada letak tsb, maka untuk menghitung nilai kuartil menggunakan rumus sbb : NK = NKB + [(LK-LKB)/(LKA-LKB)] x (NKA-NKB) Dimana : NK : nilai kuartil NKB : nilai kuartil yang berada di bawah letak kuartil LK : letak kuartil LKB : letak data kuartil yang berada di bawah letak kuartil. LKA : letak data kuartil yang berada di atas letak kuartil. NKA : nilai kuartil yang berada di atas letak kuartil

19 KUARTIL DATA BERKELOMPOK
Dimana : NKi : nilai kuartil ke-i dimana i = 1,2,3. L : tepi kelas dimana letak kuartil berada n : jumlah data/frekuensi total Cf : frekuensi kumulatif sebelum kelas kuartil Fk : frekuensi pada kelas kuartil Ci : interval kelas kuartil

20 Data Tidak Berkelompok
DESIL Desil adalah ukuran letak yang membagi data yang telah diurutkan atau data berkelompok menjadi 10 bagian sama besar, atau setiap bagian dari desil sebesar 10%. Rumus mencari letak desil untuk data tidak berkelompok : Ukuran Letak Rumus Ukuran Letak Data Tidak Berkelompok Data Berkelompok Desil 1 (D1) [1(n+1)]/10 1n/10 Desil 2 (D2) [2(n+1)]/10 2n/10 Desil 3 (D3) [3(n+1)]/10 3n/10 Desil 9 (D9) [9(n+1)]/10 9n/10

21 Jika letak desil berupa pecahan, maka nilai desil dapat diperoleh dengan :
ND = NDB + [(LD-LDB)/(LDA-LDB)] x (NDA-NDB) Dimana: ND : nilai desil NDB : nilai desil yang berada di bawah letak desil LD : letak desil LDB : letak data desil yang berada di bawah letak desil LDA : letak data desil yang berada di atas letak desil NDA : nilai desil yang berada di atas letak desil

22 DESIL DATA BERKELOMPOK
Dimana : NDi : nilai desil ke-i dimana i = 1,2,3,…,9. L : tepi kelas dimana letak desil berada n : jumlah data/frekuensi total Cf : frekuensi kumulatif sebelum kelas desil Fk : frekuensi pada kelas desil Ci : interval kelas desil

23 Data Tidak Berkelompok
PERSENTIL Persentil adalah ukuran letak yang membagi data yang telah diurutkan atau data berkelompok menjadi 100 bagian sama besar, atau setiap bagian dari persentil sebesar 1%. Rumus mencari letak persentil untuk data tidak berkelompok : Ukuran Letak Rumus Ukuran Letak Data Tidak Berkelompok Data Berkelompok Persentil 1 (P1) [1(n+1)]/100 1n/100 Persentil 2 (P2) [2(n+1)]/100 2n/100 Persentil 3 (P3) [3(n+1)]/100 3n/100 Persentil 99 (P99) [99(n+1)]/100 9n/100

24 Jika letak persentil berupa pecahan, maka nilai persentil dapat diperoleh dengan :
NP = NPB + [(LP-LPB)/(LPA-LPB)] x (NPA-NPB) Dimana: NP : nilai persentil NPB : nilai persentil yang berada di bawah letak persentil LP : letak persentil LPB : letak data persentil yang berada di bawah letak persentil LPA : letak data persentil yang berada di atas letak persentil NPA : nilai persentil yang berada di atas letak persentil

25 PERSENTIL DATA BERKELOMPOK
Dimana : NPi : nilai persentil ke-i dimana i = 1,2,3,…,99. L : tepi kelas dimana letak persentil berada n : jumlah data/frekuensi total Cf : frekuensi kumulatif sebelum kelas persentil Fk : frekuensi pada kelas persentil Ci : interval kelas persentil


Download ppt "UKURAN PEMUSATAN DAN UKURAN LETAK"

Presentasi serupa


Iklan oleh Google