Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehGilang Yehezkiel Telah diubah "9 tahun yang lalu
1
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Pokok Bahasan Sistem Persamaan Linear dan Linear dgn Dua Peubah Sistem Persamaan Linear dan Linear dgn Tiga Peubah Sistem Persamaan Linear dan Kuadrat Sistem Kuadrat dan kuadrat oleh: Islamuddin exit
2
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Sistem Persamaan Linear dan Linear dengan Dua Peubah Bentuk Umum a1x + b1y = c1 a2x + b2y = c2 ax + by = c px + qy = r atau Dengan a,b,c,p,q, dan r atau a1,b1,c1,a2,b2,c2 merupakan bilangan –bilangan real. Jika c1 = c2 = 0 maka sistem persamaan linear dikatakan homogen sedangkan jika c1 ≠ 0 atau c2 ≠ 0 maka sistem persamaan linear dikatakan tidak homogen Menentukan Himpunan Penyelesaian dari persamaan Linear Dua Peubah dapat ditentukan dengan cara sbb : 1. Metode Grafik 3. Metode Eliminasi 2. Metode Subtitusi 4. Metode determinan oleh: Islamuddin exit
3
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Metode Grafik Langkah – langkah untuk menetukan himpunan penyelesaian sistem persamaan dua peubah dengan memakai metode grafik adalah sebagai berikut Langkah I Gambarkan grafik masing – masing persamaan pada bidang Cartesius. Langkah 2 Jika kedua garis berpotongan pada satu titik maka himpunan penyelesaiannya tepat memiliki satu anggota Jika kedua garis sejajar, maka himpunan penyelesaiaannya tidak memilki anggota. Dikatakan himpunan penyelesaiannya adalah himpunan kosong Jika kedua garis berimpit maka himpunan penyelesaiaannya memiliki anggota yang tak hingga banyaknya oleh: Islamuddin exit
4
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh x + y = 1 x y 1 y x 1 x + y = 1 x – y = 3 x – y = 3 x y 3 y x 3 x – y = 3 1 1 3 – 1 P (2, -1) – 3 x + y = 1 oleh: Islamuddin exit
5
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Metode Subtitusi Langkah – langkah untuk meneyelesaikan sistem persamaan linear dua peubah dengan menggunakan metode Subtitusi Langkah 1 Pilihlah salah satu persamaan (jika ada pilih yang sederhana), kemudian nyatakan x sebagai fungsi y atau y sebagai fungsi x Langkah 2 Subtitusikan x atau y pada langkah 1 ke persamaan yang lain oleh: Islamuddin exit
6
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh x + y = 4 4x + 3y = 13 Dari persamaan x + y = 4 y = 4 - x y = 4 – x Disubstitusikan ke persamaan 4x + 3y = 13 Diperoleh : 4x + 3 (4 – x) = 13 4x + 12 – 3x = 13 x + 12 = 13 x = 1 Nilai x = 1 disubstitusikan ke persamaan y = 4 – x, diperoleh y = 4 - 1 Jadi, Himpunan penyelesaian sistem persamaan linear itu adalah {(1,3)} y = 3 oleh: Islamuddin exit
7
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Metode Eliminasi Langkah yang ditempuh adalah sbb : Nilai x dicari dengan cara mengeliminasi peubah y sedangkan nilai y di cari dengan cara mengeliminasi peubah x oleh: Islamuddin exit
8
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh : Carilah himpunan penyelesaian dari sistem persamaan berikut : 2x + 3y = 13 3x + 4y = 19 Untuk mencari nilai x kita mengeliminasi peubah y 2x + 3y = 13 X 4 8x + 12y = 52 3x + 4y = 19 X 3 9x + 12y = 57 – x = – 5 x = 5 2x + 3y = 13 X 3 6x + 9y = 39 3x + 4y = 19 X 2 6x + 8y = 38 y =1 Jadi, Himpunan penyelesaiannya adalah {( 5,1)} oleh: Islamuddin exit
9
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Penyelesaian sistem persamaan linear dapat juga menggunakan metode subtitusi dan metode eliminasi secara bersamaan. Perhatikan contoh berikut : Carilah himpunan penyelesaiaan dari sistem persamaan berikut 2x – 5y = 15 3x + 4y = 11 Untuk mencari nilai x kita mengeliminasi peubah y 2x – 5y = 15 X 4 8x – 20y = 60 15x + 20y = 55 3x + 4y = 11 X 5 23x = 115 x = 5 x disubtitusikan ke dalam salah satu persamaan semula 2x – 5y = 15 – 5y = 5 Jadi Himpunan Penyelesaiannya adalah {(5,-1)} 2(5) – 5y = 15 y = – 1 – 5y = 15 – 10 oleh: Islamuddin exit
10
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Beberapa persoalan sehari –hari seringkali dapat diselesaikan dengan memakai model matematika yang berbentuk sistem persamaan dua peubah. Perhatikan contoh berikut : Disebuah toko Komar membeli 3 barang A dan 4 barang B dan dia harus membayar Rp2.700,00. Sedangkan Yayuk harus membayar Rp3.600,00 untuk pembelian 6 barang A dan 2 barang B. Jika Ratna membeli 1 barang A dan 1 barang B, maka ia harus membayar …. Misalkan : x = barang A dan y = barang B Komar 3x + 4y = 2.700 (1) Yayuk 6x + 2y = 3.600 (2) 3x + 4y = 2.700 X 2 6x + 8y = 5.400 6x + 2y = 3.600 X 1 6x + 2y = 3.600 6y = 1.800 y = 300 oleh: Islamuddin exit
11
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur y = 300, disubtitusikan ke persamaan (2) 3x + 4y = 2.700 3x + 4(300) = 2.700 3x = 2.700 3x = – 1.200 3x = 1.500 x = 500 Jadi harga sebuang barang A adalah Rp500,00 dan harga sebuang barang B adalah Rp300,00 Ratna harus membayar Rp500,00 + Rp300,00 = Rp800,00 untuk membeli 1 barang A dan 1 barang B oleh: Islamuddin exit
12
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Sistem persamaan Linear dan Linear dengan Tiga Peubah Bentuk umum sistem persamaan linear dengan tiga peubah x,y, dan z dapat dituliskan sebagai berikut : ax + by + cz = d ex + fy + gz = h ix + jy + kz = l a1x + b1y + c1z = d1 a2x + b2y + c2z = d2 a3x + b3y + c3z = d3 atau dengan a, b, c, e, f, g, h, I, j, k, dan l atau a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, dan d3 merupakan bilangan real . Himpunan penyelesaian sistem linear tiga peubah dapat ditentukan dengan beberapa cara sebagai berikut : 1. Metode Substitusi 2. Metode Eliminasi atau 3. Metede Determinan oleh: Islamuddin exit
13
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Metode Substitusi Langkah – langkah penyelesaian sistem persamaan linear tiga peubah dgn menggunakan metode substitusi adalah sebagai berikut : Langkah 1 : Pilihlah salah satu persamaan yang sederhana, kemudian nyatakan x sebagai fungsi y dan z atau y sebagai fungsi x dan z, atau z sebagai fungsi x dan y Langkah 2 : Substitusikan x atau y atau z yang diperoleh pada langkah 1 ke dalam dua persamaan yang lainnya sehingga didapat sistem persamaan linear dua peubah Langkah 3 : Selesaikan sistem persamaan linear dua peubah yang diperoleh pada langkah 2 oleh: Islamuddin exit
14
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh : Carilah himpunan penyelesaian dari persamaan linear berikut x – 2y + z = 6 3x + y + 2z = 4 7x – 6y – z = 10 Dari persamaan x – 2y + z = 6 x = 2y – z + 6. Peubah x ini disubstitusikan ke persamaan 3x + y -2z = 4 dan 7x – 6y – z = 10 diperoleh : 3(2y – z + 6) + y – 2z = 4 6y – 3z y – 2z = 4 7y – 5z = –14 (3) 7(2y – z + 6) – 6y – z = 10 14y – 7z + 42 – 6y – z = 10 8y – 8z = – 32 y – z = – 4 (4) oleh: Islamuddin exit
15
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Persamaan 3 dan 4 membentuk sistem persamaan linear dua peubah y dan z: 7y – 5z = –14 dari persamaan y – z = – 4 y = z – 4 y – z = –4 Peubah y disubstitusikan ke persamaan 7y -5z = –14, diperoleh : 7 (z – 4) – 5z = –14 7z – 28 – 5z = – 14 2z = 14 z = 7 Substitusikan nilai z = 7 ke persamaan y = z – 4, diperoleh y = 7 – 4 = 3 Substitusikan nilai y = 3 dan z = 7 ke persamaan x = 2y – z + 6, diperoleh x = 2(3) – 7 + 6 Jadi himpunan penyelesaiannya adalah {(5, 3, 7)} x = 6 – 7 + 6 x = 5 oleh: Islamuddin exit
16
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Metode Eliminasi Langkah – langkah penyelesaian sistem persamaan linear tiga peubah dengan menggunakan metode eliminasi adalah : Langkah 1: Eliminasi salah satu peubah x atau y atau z sehingga diperoleh sistem persamaan linear dua peubah Langkah 2: Selesaikan sistem persamaan linear dua peubah yang didapat pada langkah 1 Langkah 3: Substitusikan nilai – nilai dua peubah yang diperoleh pada langkah 2 ke dalam salah satu persamaan semula untuk mendapatkan nilai peubah yang lainnya. oleh: Islamuddin exit
17
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh : Carilah himpunan penyelesaian sistem persamaan linear : 2x – y + z = 6 x – 3y + z = –2 x + 2y – z = 3 Eliminasi peubah z: Dari persamaan pertama dan kedua: Dari persamaan kedua dan ketiga: 2x – y + z = 6 x – 3y + z = –2 x – 3y + z = –2 x + 2y – z = 3 x + 2y = 8 (4) 2x – y = 1 (5) Persamaan 4 dan 5 membentuk sistem persamaan linear dua peubah x dan y x + 2y = 8 Eliminasi peubah y: 2x – y = 1 x + 2y = 8 X 1 x + 2y = 8 4x – 2y = 2 2x – y = 1 X 2 5x = 10 x = 2 oleh: Islamuddin exit
18
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Eliminasi peubah x: x + 2y = 8 X 2 2x + 4y = 16 2x – y = 1 2x – y = 1 X 1 5y = 15 y = 3 Nilai z dicari dengan mensubstitusikan x = 2 dan y = 3 ke salah satu persamaan semula misal x + 2y – z = 3 x + 2y – z = 3 2 + 2(3) – z = 3 8 – z = 3 z = 5 Jadi, Himpunan penyelesaian sistem persamaan linear adalah {(2, 3, 5)} oleh: Islamuddin exit
19
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh penerapan persoalan sehari – hari dalam sistem persamaan tiga peubah: Ali, Boneng, dan Cecep berbelanja di sebuah toko buku. Ali membeli dua buah buku tulis, sebuah pensil dan sebuah penghapus dengan membayar Rp4.700,00 Boneng membeli sebuah buku tulis , dua buah pensil dan sebuah penghapus dengan membayar Rp4.300,00 Cecep membeli tiga buah buku tulis, dua buah pensil dan sebuah penghapus dengan membayar Rp7.100,00. Berapakah harga untuk sebuah buku tulis, harga sebuah pensil dan harga sebuah penghapus ? Jika dimisalkan bahwa : Harga untuk sebuah buku tulis adalah x rupiah Harga untuk sebuah pensil adalah y rupiah dan Harga untuk sebuah penghapus adalah z rupiah Dengan demikian model matematika yang sesuai dengan data tersebut adalah : oleh: Islamuddin exit
20
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur 2x + y + z = 4.700 x + 2y + z = 4.300 3x + 2y + z = 7.100 Eliminasi peubah z 2x + y + z = 4.700 x + 2y + z = 4.300 x + 2y + z = 4.300 3x + 2y + z = 7.100 x – y = 400 -2x = x = 1.400 Substitusikan nilai x = ke persamaan x – y = 1.400, diperoleh : 1.400 – y = 400 y = 1.000 Substitusikan nilai x = dan y = ke persamaan 2x + y + z = diperoleh: 2(1.400) z = 4.700 z = 4.700 z = 900 Jadi harga sebuah buku tulis adalah Rp1.400,00 harga sebuah pensil adalah Rp1.000,00 dan harga sebuah penghapus adalah Rp900,00 oleh: Islamuddin exit
21
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Sistem Persamaan Linear dan Kuadrat Sistem persamaan linear dan kuadrat dibagi menjadi dua bagian sebagai berikut : 1. Sistem persamaan linear dan kuadrat, bagian kuadrat berbentuk Eksplisit Sistem persamaan Linear dan kuadrat, bagian kuadrat berbentuk Implisit oleh: Islamuddin exit
22
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur 1. Sistem Persamaan Linear dan Kuadrat, bagian kuadrat berbentuk Eksplisit Suatu persamaan dua peubah x dan y dinyatakan berbentuk eksplisit jika persamaan itu dapat dinyatakan dalam bentuk y = f(x) atau x = f(y) y = ax + b Bagian linear y = px2 + qx + r Bagian kuadrat Dengan a, b, p, q, dan r merupakan bilangan – bilangan real. Secara umum, penyelesaian atau himpunan penyelesaian dari sistem persamaan linear dan kuadrat dapat ditentukan melalui langkah – langkah sebagai berikut : Langkah 1 : Substitusikan bagian linear ke bagian kuadrat Langkah 2: Nilai – nilai x pada Langkah 1 (jika ada) disubstitusikan ke persamaan linear oleh: Islamuddin exit
23
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Contoh : Carilah himpunan penyelesaian sistem persamaan linear dan kuadrat berikut ini : y = x – 1 y = x2 – 3x + 2 Substitusikan bagian linear y = x – 1 ke bagian kuadrat y = x2 – 3x + 2, diperoleh x – 1 = x2 – 3x + 2 x2 – 4x + 3 = 0 (x – 1)(x – 3) = 0 x = 1 atau x = 3 Nilai x = 1 atau x = 3 disubtitusikan ke persamaan y = x – 1 Untuk x = 3 diperoleh y = 3 – 1 = 2 jadi (3, 2) Untuk x = 1 diperoleh y = 1 – 1 = 0 jadi (1, 0) Jadi himpunan penyelesaiannya adalah {(1, 0), (3, 2)} oleh: Islamuddin exit
24
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur 2. Sistem persamaan linear dan kuadrat, bagian kuadrat berbentuk implisit Persamaan dua peubah x dan y dikatakan berbentuk implisit jika persamaan itu tidak dapat dinyatakan dalam bentuk y = f(x) atau x = f(y). Persamaan implisit dinyatakan dalam bentuk f(x, y) = 0. px + qy + r = 0 Bagian linear ax2 + by2 +cxy + dx + ey + f = 0 Bagian kuadrat Dengan a, b, c, d, e, f, p, q dan r merupakan bilangan – bilangan real. Bilangan kuadrat yang berbentuk implisit ada dua kemungkinan, yaitu : A. Bentuk implisit yang tidak dapat difaktorkan B. Bentuk implisit yang dapat difaktorkan oleh: Islamuddin exit
25
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur A. Sistem persamaan linear dan kuadrat, bagian kuadrat berbentuk implisit yang tak dapat difaktorkan Langkah – langkah penyelesaiannya adalah : Langkah 1: Pada bagian linear, nyatakan x dalam y atau y dalam x Langkah 2: Substitusikan x dan y pada langkah 1 ke bagian bentuk kuadrat, sehingga diperoleh persamaan kuadrat dalam x dan y Langkah ketiga: Selesaikan persamaan kuadrat yang diperoleh pada langkah 2, kemudian nilai – nilai yang didapat disubstitusikan ke persamaan linear oleh: Islamuddin exit
26
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Carilah himpunan penyelesaian dari sistem persamaan linear dan kuadrat berikut ini : x + y – 1 = 0 x2 + y2 – 25 = 0 Dari persamaan x + y – 1 = 0 menjadi y = 1 – x Substitusi y ke persamaan x2 + y2 – 25 = 0, diperoleh : x2 + ( 1 – x)2 – 25 = 0 x2 + 1 – 2x + x2 – 25 = 0 2x2 – 2x – 24 = 0 x2 – x – 12 = 0 (x + 3)(x – 4) = 0 x = -3 atau x = 4 Substitusi nilai – nilai x = -3 aatau x = 4 ke persamaan y = 1 – x Untuk x = -3 diperoleh y = 1 – (-3) = 4 jadi (-3, 4) Untuk x = 4 diperoleh y = 1 – 4 = -3 jadi (4, -3) Jadi himpunan penyelesaiannya adalah {(-3, 4)(4, -3)} oleh: Islamuddin exit
27
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur A. Sistem persamaan linear dan kuadrat, bagian kuadrat berbentuk implisit yang dapat difaktorkan Langkah – langkah penyelesaiannya adalah : Langkah 1: Nyatakan bagian bentuk kuadratnya ke dalam faktor –faktor dengan ruas kanan sama dengan nol, sehingga diperoleh L1.L2 = 0. L1.L2 = 0. jadi L1 = 0 atau L2 = 0, dengan L1 dan L2 masing – masing berbentuk linier Langkah 2: Bentuk – bentuk linear yang diperoleh pada langkah 1 digabungkan dengan persamaan linear semula, sehingga diperoleh sistem – sistem persamaan linear dengan dua peubah. Kemudian selesaikan tiap sistem persamaan linier itu oleh: Islamuddin exit
28
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Carilah himpunan penyelesaian sistem persamaan linear dan kuadrat berikut: 2x + 3y = 8 4x2 – 12xy + 9y2 = 16 Bagian bentuk kuadrat dapat difaktorkan sebagai berikut: 4x2 – 12xy + 9y2 = 16 (2x – 3y)2 – 16 = 0 (2x – 3y + 4)(2x – 3y – 4) = 0 2x – 3y + 4 = 0 atau 2x – 3y – 4 = 0 Penggabungan dengan persamaan linear semula diperoleh: 2x + 3y = 8 2x – 3y + 4 = 0 2x + 3y = 8 2x – 3y – 4 = 0 Dari sistem persamaan ini diperoleh penyelesaian (1, 2) Dari sistem persamaan ini diperoleh penyelesaian ( 3, 2/3) Jadi, himpunan penyelesaian sistem persamaan itu adalah {(1,2), (2, 2/3)} oleh: Islamuddin exit
29
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Sistem persamaan kuadrat dan kuadrat Sistem persamaan kuadrat dan kuadrat dalam bentuk yang sederhana dapat dituliskan sebagai berikut : y = ax2 + bx + c Bagian kuadrat pertama y = px2 + qx + r Bagian kuadrat kedua Langkah – langkah untuk menentukan himpunan penyelesaian dari sistem persamaan kuadrat dan kuadrat Langkah 1 : Substitusikan bagian kuadrat yang pertama kebagian kuadrat yang kedua Langkah 2 : Nilai – nilai x yang diperoleh dari langkah 1 (jika ada) disubstitusikan ke bagian kuadrat yang pertama atau bagian kuadrat yang kedua ( pilihlah bentuk yang sederhana). oleh: Islamuddin exit
30
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur Carilah himpunan penyelesaian dari tiap sistem persamaan kuadrat dan kuadrat berikut ini: y = x2 – 1 y = 1 – x2 Substitusi y = x2 – 1 ke persamaan y = 1 – x2, diperoleh : x2 – 1 = 1 – x2 2x2 – 2 = 0 x2 – 1 = 0 (x + 1)(x – 1) = 0 x = -1 atau x = 1 Substitusikan x = -1 atau x = 1 ke persamaan y = x2 - 1 Untuk x = -1 diperoleh y = (-1)2 – 1 = 0 jadi (-1, 0) Untuk x = 1 diperoleh y = (1)2 – 1 = 0 jadi (1, 0) Jadi himpunan penyelesaiannya adalah {(-1, 0),(1, 0)} oleh: Islamuddin exit
31
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur SAMPAI JUMPA DI PEMBAHASAN BERIKUTNYA oleh: Islamuddin exit
32
Sistem Persamaan Linier dan kuadrat
MGMP Matematika SMA/SMK Bontang-Kaltim Tim MGMP Matematika SMA/SMK Bontang-Kalimantan Timur oleh: Islamuddin exit
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.