Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Applied Multivariate Analysis
Cluster Analysis
2
Tujuan Utama Mengambil sejumlah observasi dan membuat pengelompokkan unit-unit, sehingga unit-unit yg berada dlm satu kelompok mempunyai sifat sama dan unit antar kelompok mempunyai sifat berbeda.
3
Think About It Homogeneous subgroups are not the same as naturally occurring clusters. Homogeneous, but not natural clusters …
4
Hal-hal yg diperhatikan
Beberapa ukuran similaritas (kedekatan) dan dissimilaritas unit-unit. Euclidian Mahallanobis Penentuan cluster (banyak cluster) Hierarki Non Hierarki
5
Konsep Hierarki Hasil pengelompokkan alammi
Hasil pengelompokkan merupakan pengabungan: contoh, lima kluster diperoleh dari penggabungan 2 kluster dari enam kluster. Metode agglomerasi – setiap observasi adalah cluster dimulai dengan menggabungkan Metode divisive (lawan agglomerasi)
6
Konsep partisi Mempartisi observasi kedalam cluster-cluster sehingga homogen dlm cluster. Bukan konsep penggabungan. Final cluster masih belum terpisah benar.
7
Nearest Neighbors Method
Single linkage method Do until all points are placed in a single cluster Start with N clusters Form a cluster from the two closest points Think of this new cluster as a “point” and define the distance from any point to it as the minimum distance to any point in it.
8
Nearest Neighbors Example
Pairwise distances between six points C0={[1],[2],[3],[4],[5],[6]} C1={[1],[2],[3,5],[4],[6]}
9
Nearest Neighbors Example
Pairwise distances between five “points” C0={[1],[2],[3],[4],[5],[6]} C1={[1],[2],[3,5],[4],[6]} C2={[1],[2],[3,5,6],[4]} smallest
10
Nearest Neighbors Example
Pairwise distances between four “points” C0={[1],[2],[3],[4],[5],[6]} C1={[1],[2],[3,5],[4],[6]} C2={[1],[2],[3,5,6],[4]} C3={[1],[2,4],[3,5,6]} smallest
11
Nearest Neighbors Example
Pairwise distances between three “points” C0={[1],[2],[3],[4],[5],[6]} C1={[1],[2],[3,5],[4],[6]} C2={[1],[2],[3,5,6],[4]} C3={[1],[2,4],[3,5,6]} C4={[2,4],[1,3,5,6]} smallest Single Cluster
12
Prosedur K-Mean Cluster
13
Aplikasi (SPSS) Two Step cluster Hierarki Non Hierarki (K-mean)
Eksplorasi Banyak kluster berdasarkan nilai AIC/ BIC Hierarki Single linkage Complete linkage Non Hierarki (K-mean)
14
Two step cluster Data car_sales.sav
Catagorical variable : vehicle type Continous variable :Price in thousands – feul efficiency Plot Rank of variable important :by variables and confidence level Output AIC / BIC
15
Output SPSS Two Step Cluster
16
Distribusi kluster Pivot (double klik centroid) : Pivoting trays (buat struktur berikut)
17
Deskripsi Tiap Kluster
18
Cluster Hierarki Data : car_sales
Select cases : if conditional (type =0) & (sales >100) Analyse> classify>hierarchical cluster Price in thousands through Fuel efficiency as analysis variables. Select Model as the case labeling variable Plot > Dendogram Method > Nearest neighbor , Zscore
19
Output cluster hierarki
20
Aplikasi Minitab : cereal.mtw
Survey tentang merk dan kandungan gizi cereal Akan dilakukan pengelompokkan merk dan kandungan gizi
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.