Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Pertemuan PERCOBAAN FAKTORIAL DENGAN RANCANGAN ACAK LENGKAP

Presentasi serupa


Presentasi berjudul: "Pertemuan PERCOBAAN FAKTORIAL DENGAN RANCANGAN ACAK LENGKAP"— Transcript presentasi:

1 Pertemuan 13-14 PERCOBAAN FAKTORIAL DENGAN RANCANGAN ACAK LENGKAP

2 Gambaran Umum Faktor → satu macam perlakuan yang mempunyai beberapa taraf (level). Contoh: dosis 0 # pemberian obat dosis 1 dosis 2 dosis 3 tanpa tep. Kangkung # pemberian ransum pakan ,2% tepung kangkung 0,4% tepung kangkung

3 Percobaan berfaktor: → percobaan yang menyangkut 2 faktor atau lebih
Percobaan berfaktor: → percobaan yang menyangkut 2 faktor atau lebih . # Percobaan berfaktor paling sederhana: 2 x 2 Faktor A dgn 2 taraf Faktor B dgn 2 taraf # Misalnya: Faktor A (jenis ayam) Faktor B (macam pakan) Diperoleh 4 kombinasi perlakuan: a0 b0 a1 b0 a0 b1 a1 b1 a0 (ayam ras) a1 (ayam buras) b0 (tanpa kangkung) b1 (diberi kangkung)

4 II. Faktorial dengan R.A.K. III. Faktorial dengan R.B.L.
Percobaan berfaktor → merupakan cara utk menyusun kombinasi percobaan yang diberikan. Tujuan melakukan percobaan faktorial → untuk mengetahui adakah interaksi antara faktor2 yang diberikan sebagai perlakuan tsb. Pelaksanaan percobaan tergantung lingkungan / bahan percobaan yang akan dipakai . I. Faktorial dengan R.A.L. II. Faktorial dengan R.A.K. III. Faktorial dengan R.B.L.

5 Percobaan Faktorial dengan Rancangan Acak Lengkap
Contoh: Percobaan faktorial dengan dua faktor, masing2 ter- diri dari dua level → a0 dan a1 serta b0 dan b1 , dilak sanakan dengan R.A.L. memakai ulangan 5 kali. Ulangan Total rata-rata a0b0 a0b1 a1b0 a1b1 I II III IV V

6 Rerata Nilai Pengamatan Perlakuan
Faktor A F a k t o r B Nilai Tengah ( Rerata) (b1 – b0) b0 b1 30 a0b0 32 a0b1 31 a0 2 33 a1b0 37 a1b1 35 a1 4 31,5 34,5 3 (a1 – a0) 5 a0 a1

7 I. Pengaruh Sederhana: 1 Pengaruh sederhana faktor A pada taraf b0 = ( a1b0 – a0b0 ) = = 3 2. Pengaruh sederhana faktor A pada taraf b1 = ( a1b1 – a0b1 ) = = 5 3. Pengaruh sederhana faktor B pada taraf a0 = ( a0b1 – a0b0 ) = = 2 4. Pengaruh sederhana faktor B pada taraf a1 = ( a1b1 - a1b0 ) = = 4

8 II. Pengaruh Utama: 1. Pengaruh utama faktor A (tanpa menghiraukan faktor B ) = ½ [( a1b0 - a0b0 ) + ( a1b1 – a0b1 )] = ½ [( ) + ( )] = 4 2. Pengaruh utama faktor B (tanpa menghiraukan faktor A ) = ½ [( a0b1 – a0b0 ) + ( a1b1 – a1b0 )] = ½ [( ) + ( )] = 3

9 III. Pengaruh interaksi:
Pengaruh interaksi antara faktor A dan faktor B : AB = ½ [( a1b1 – a0b1 ) – ( a1b0 – a0b0 )] = ½ [( ) – ( )] = 1 Pengaruh interaksi antara faktor B dan faktor A : BA = ½ [( a1b1 – a1b0 ) – ( a0b1 – a0b0 )] = ½ [( ) – ( )] Sifat setangkup (sama).

10 Percobaan faktorial dengan 2 faktor:
Faktor A (jenis ayam) → a0 (ayam Ras) a1 (ayam Buras) Faktor B (macam pakan) → b0 (ransum tanpa kangkung) b1 (ransum diberi kangkung) Dilaksanakan menggunakan RAL, dengan 5 ulangan. Diperoleh 2 x 2 → 4 kombinasi perlakuan: a0b0 a0b1 masing2 a1b0 diulang a1b1 5 kali

11 Pengacakan Faktorial RAL:
(a0b1) II (a0b0) IV (a1b0) IV (a0b1) V (a1b1) III (a1b0) II (a0b1) I (a0b0) I (a1b1) I (a0b0) II (a1b1) IV (a1b0) V (a0b0) V (a1b1) V (a1b0) I (a0b1) III (a1b0) III (a0b1) IV (a0b0) III (a1b1) II

12 Yi j k = μ + τi + βj + (τβ) i j + εi j k
Model : Yi j k = μ + τi + βj + (τβ) i j + εi j k Yi j k = hasil pengamatan utk faktor A taraf ke i, faktor B taraf ke j dan pada ulangan ke k. μ = nilai tengah umum τi = pengaruh faktor A pada taraf ke i βj = pengaruh faktor B pada taraf ke j. (τβ) i j = pengaruh interaksi AB pada taraf ke i (dari faktor A), dan taraf ke j (dari faktor ke B) ε i j k = pengaruh acak (galat percobaan) pada taraf ke i (faktor A), taraf ke j (faktor B), interaksi AB yang ke i dan ke j , dan pada ulangan ke k.

13 Analisis Ragam Faktor B 1 2 … b Faktor A Y111, Y112, …, Y11n
Y1b1, Y1b1, …, Y1bn Y211, Y212, …, Y21n Y221, Y222, …, Y22n Y2b1, Y2b2, …, Y2bn . a Ya11,Ya12, …, Ya1n Ya21, Ya22,…, Ya2n Yab1, Yab2, …, Yabn

14 Analisis Ragam

15 Analisis Ragam Sumber Keragaman d.b. J. K K.T. Fhitung Perlakuan: A B
Galat ab-1 a-1 b-1 (a-1)(b-1) ab(n-1) JKP JK(A) JK(B) JK(AB) JKG KT P KT (A) KT (B) KT (AB) KT G Total nab-1 JKT

16 Percobaan Faktorial 2 Faktor
Model Tetap (taraf faktor A tetap, taraf faktor B tetap) Model Acak (taraf faktor A acak, taraf faktor B acak) Model Campuran (taraf faktor A tetap, taraf faktor B acak) Model Campuran (taraf faktor A acak, taraf faktor B tetap)

17 I. Model Tetap (faktor A dan B tetap)
Asumsi: 𝑖 𝜏 𝑖 = 𝑗 𝛽 𝑗 = 𝑖 (𝜏𝛽) 𝑖𝑗 = 𝑗 (𝜏𝛽) 𝑖𝑗 =0 Hipotesis: 𝐻 0 : (𝜏𝛽) 𝑖𝑗 =0 (tidakadapengaruhinteraksiterhadaprespon yang diamati) 𝐻 1 :adapengaruhinteraksiterhadaprespon yang diamati 2. 𝐻 0 : 𝜏 𝑖 =0 (tidakadaperbedaanrespondiantarataraf A yang dicobakan) 𝐻 1 : adaperbedaanrespondiantarataraf A yang dicobakan 3. 𝐻 0 : 𝛽 𝑗 =0 (tidakadaperbedaanrespondiantarataraf B yang dicobakan) 𝐻 1 : adaperbedaanrespondiantarataraffaktor B yang dicobakan

18 F hitung model tetap F Hitung (AB) = 𝐾𝑇 (𝐴𝐵) 𝐾𝑇𝐺
F Hitung (B) = 𝐾𝑇 (𝐵) 𝐾𝑇𝐺

19 II. Model Acak (faktor A dan B acak)
Asumsi : Pengaruhtaraffaktor A timbulsecaraacak, 𝜏 𝑖 ~𝑁𝐼(0, 𝜎 2 𝜏 ) Pengaruhtaraffaktor B timbulsecaraacak , 𝛽 𝑗 ~𝑁𝐼 0, 𝜎 2 𝛽𝑗 Pengaruhinteraksitimbulsecaraacak, (𝜏𝛽) 𝑖𝑗 ~𝑁𝐼 0, 𝜎 2 𝜏𝛽 Hipotesis 1. 𝐻 0 : 𝜎 2 𝜏𝛽 =0 (tidakadakeragamandalampopulasikombinasiperlakuan) 𝐻 1 : 𝜎 2 𝜏𝛽 >0 ( adakeragamandalampopulasikombinasiperlakuan) 2. 𝐻 0 : 𝜎 2 𝜏 =0 (tidakadakeragamandalampopulasitaraffaktor A) 𝐻 1 : 𝜎 2 𝜏 >0(ada keragamandalampopulasitaraffaktor A) 3. 𝐻 0 : 𝜎 2 𝛽 =0 (tidakadakeragamandalampopulasitaraffaktorB) 𝐻 1 : 𝜎 2 𝛽 >0 (tidakadakeragamandalampopulasitaraffaktor B)

20 F hitung model acak F hitung (AB) = 𝐾𝑇 (𝐴𝐵) 𝐾𝑇𝐺
F hitung (B) = 𝐾𝑇 (𝐵) 𝐾𝑇 (𝐴𝐵)

21 III. Model Campuran (faktor A tetap, faktor B acak)
Asumsi : 𝑖 𝜏 𝑖 = 𝑖 (𝜏𝛽) 𝑖𝑗 =0 𝛽 𝑗 ~𝑁𝐼 0, 𝜎 2 𝛽 𝑗 (𝜏𝛽) 𝑖𝑗 ≠0 Hipotesis 𝐻 0 : 𝜎 2 𝜏𝛽 =0 (tidakadakeragamandalampopulasikombinasiperlakuan) 𝐻 1 : 𝜎 2 𝜏𝛽 >0(adakeragamandalampopulasikombinasiperlakuan) 2. 𝐻 0 : 𝜏 𝑖 =0 (tidakadaperbedaanrespondiantarataraf A yang dicobakan) 𝐻 1 : minimal adasatutaraf A yang dicobakanmempengaruhirespon 3. 𝐻 0 : 𝜎 2 𝛽 =0 ( tidakadakeragamandalampopulasitaraffaktor B) 𝐻 1 : 𝜎 2 𝛽 >0 ( adakeragamandalampopulasitaraffaktor B)

22 F hitung model campuran (faktor A tetap, B acak)
F hitung (AB) = 𝐾𝑇 (𝐴𝐵) 𝐾𝑇𝐺 F hitung A = 𝐾𝑇 (𝐴) 𝐾𝑇 (𝐴𝐵) F hitung B = 𝐾𝑇 (𝐵) 𝐾𝑇𝐺

23 IV. Model Campuran ( faktor A acak, faktor B tetap)
Asumsi : 𝜏 𝑖 ~𝑁𝐼 0, 𝜎 2 𝜏 𝑗 𝛽 𝑗 = 𝑗 (𝜏𝛽) 𝑖𝑗 =0 𝑖 (𝜏𝛽) 𝑖𝑗 ≠0 Hipotesis 1. 𝐻 0 : 𝜎 2 𝜏𝛽 =0 (tidakadakeragamandalampopulasikombinasiperlakuan) 𝐻 1 : 𝜎 2 𝜏𝛽 >0(adakeragamandalampopulasikombinasiperlakuan) 2. 𝐻 0 : 𝜎 2 𝜏 =0 (tidakadakeragamandalampopulasitaraffaktor A) 𝐻 1 : 𝜎 2 𝜏 >0(adakeragamandalampopulasitaraffaktor A) 3. 𝐻 0 : 𝛽 𝑗 =0 (tidakadaperbedaanrespon di antarataraffaktor B yang dicobakan) 𝐻 1 : minimal adasatutaraffaktor B yang dicobakanmempengaruhirespon

24 F hitung model campuran (faktor A acak, B tetap)
F hitung (AB) = 𝐾𝑇 (𝐴𝐵) 𝐾𝑇𝐺 F hitung (A) = 𝐾𝑇 (𝐴) 𝐾𝑇𝐺 F hitung (B) = 𝐾𝑇 (𝐵) 𝐾𝑇 (𝐴𝐵)

25 Contoh Penerapan Percobaan di rumah kaca, ingin mengetahui pengaruh pe- mupukan dan interval pemotongan thdp produksi hijauan pakan rumput setaria. Perlakuan pemupukan terdiri dari 5 macam: a0 = kontrol (tanpa pupuk) a1 = 10 ton pupuk kandang/ha a2 = 20 ton pupuk kandang/ha a3 = urea dgn dosis mengandung N setara dengan N dalam a1 a4 = urea dgn dosis mengandung N setara dengan N dalam a2.

26 Perlakuan interval pemotongan utk Setaria terdiri 3 macam: b0 = interval pemotongan 20 hari b1 = interval pemotongan 30 hari b2 = interval pemotongan 40 hari diperoleh 5 x 3 = 15 kombinasi perlakuan Ulangan yang diberikan 3 kali, sehingga diperoleh: 15 x 3 = 45 unit percobaan

27 Pengamatan thdp Produksi bhn kering :
produksi kumulatif b0 PP PI PII PIII PIV PV PVI b1 PP PI PII PIII PIV b2 PP PI PII PIII 20 hari 30 hari 40 hari

28 Berat kering hijauan ( Produksi kumulatif )
Ulangan a0b0 a0b1 a0b2 a4b1 a4b2 I II III 21,4 20,4 19,8 27,5 28,6 25,8 31,1 40,3 33,6 56,0 58,4 54,2 62,3 71,3 61,1 Jumlah 61,6 81,9 105,0 168,6 194,7

29 Total untuk tiap perlakuan
Pemu- pukan Interval pemotongan Jumlah Rata-rata tiap unit percobaan b b b2 a0 a1 a2 a3 a4 61, , ,0 58, , ,3 64, , ,4 96, , ,1 125, , ,7 248,5 239,5 258,9 387,0 488,8 27,60 26,61 28,77 43,00 54,31 407, , ,5 1622,7 Rata-rata tiap unit Percob. 27, , ,03

30 Perhitungan: JKP = JKP = JKA = = 60677,09 – 58514,56 = 2162,53 JKB =
61, , , ,72 = ,14 – 58514,56 = 7776,58 248, , , ,72 = ,68 – 58514,56 = 5356,12 407, , , ,72 = ,09 – 58514,56 = 2162,53 JKP = JKA = JKB =

31 JKAB = JKP – JKA - JKB = 7776,58 – 5356,12 – 2162,53 = 257,93
= 7776,58 – 5356,12 – 2162,53 = 257,93 JKT = 21, , ,12 - FK = , ,56 = 8209,83 JKG = JKT – JKP = 8209, ,58 = 433,25

32 Anova S. K. d.b J. K. K. T. T o t a l 44 8209,83 Fhitung Ftabel
Perlakuan Pemupukan Interv. Pemot. Pemup.x Int.P. G a l a t 14 4 2 8 30 7776,58 5356,12 2162,53 257,93 433,25 555,47 1339,03 1081,27 32,24 14,44 92,73** 74,88** 2,23 T o t a l 44 8209,83 F tabel utk Pemupukan → F(0,05) = 2,69 dan F(0,01) = 4,02 F tabel Interv. Pemot. → F(0,05) = 3,32 dan F(0,01) = 5,39 F tabel Pemup.x Int.P. → F(0,05) = 2,27 dan F(0,01) = 3,17

33 Latihan 1 Seorang peneliti ingin mengetahui pengaruh varietas jagung (faktor A) dan pemupukan (faktor B) terhadap produksi tanaman jagung. Ia menduga bahwa tingkat kesuburan tanah percobaannya relatif homogen dengan rencana ulangan sebanyak 5 kali. Faktor varietas jagung terdiri dari dua taraf yaitu X dan Y. Faktor pemupukan terdiri dari 2 taraf yaitu dosis pemupukan 0 kg N/Ha (A) dan dosis pemupukan 60 kg N/Ha (B). Diperolehlah data kombinasi dari tiap taraf sebagai berikut: Kombinasi Perlakuan XA XB YA YB 8.53 17.53 32.00 39.14 20.53 21.07 23.80 26.20 12.53 20.80 28.87 31.33 14.00 17.33 25.06 45.80 10.80 20.07 29.33 40.20

34 Latihan 2 Seorang insinyur elektro menyatakan bahwa tegangan output maksimum dan baterai mobil (aki) dipengaruhi oleh jenis material dan temperatur lokasi dimana baterai tersebut dirakit. Empat ulangan dari percobaan faktorial dilakukan di laboratorium untuk 3 material dan 3 temperatur. Percobaan dengan rancangan dasar RAL memberikan data sbb:

35 Jenis Material Temperatur Total 50 65 80 1 130 34 20 155 40 70 74 82 180 75 58 Subtotal 539 229 230 998 Rata-rata 134.75 57.25 57.5 2 150 136 25 188 122 159 106 126 115 45 623 479 198 1300 155.75 119.75 49.5 3 138 174 96 110 120 104 168 160 139 60 576 583 342 1501 144 145.75 85.5 1738 1291 770 3799


Download ppt "Pertemuan PERCOBAAN FAKTORIAL DENGAN RANCANGAN ACAK LENGKAP"

Presentasi serupa


Iklan oleh Google