Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Regresi linier sederhana
Kuliah #2 analisis regresi Usman Bustaman @akbardarmawan/3SE1
2
Apa itu? Regresi Linier Sederhana @akbardarmawan/3SE1
3
Regresi (Buku 5: Kutner, Et All P. 5)
Sir Francis Galton (latter part of the 19th century): studied the relation between heights of parents and children noted that the heights of children of both tall and short parents appeared to "revert" or "regress" to the mean of the group. developed a mathematical description of this regression tendency, today's regression models (to describe statistical relations between variables). @akbardarmawan/3SE1
4
linier Masih ingat Y=mX+B? Slope? Konstanta? m B Y X
@akbardarmawan/3SE1
5
Linier lebih lanjut… Linier dalam paramater… Persamaan Linier orde 1:
Dst… (orde pangkat tertinggi yang terdapat pada variabel bebasnya) @akbardarmawan/3SE1
6
sederhana Relasi antar 2 variabel: 1 variabel bebas (independent variable) 1 variabel tak bebas (dependent variable) Y=mX+B? Mana variabel bebas? Mana variabel tak bebas? Y m X B @akbardarmawan/3SE1
7
Bagaimana membangun Model Regresi Linier Sederhana
Bagaimana membangun Model Regresi Linier Sederhana? Analisis/ Comment Grafik-2 Berikut: @akbardarmawan/3SE1
8
Analisis/Comment Grafik-2 Berikut:
D @akbardarmawan/3SE1
9
Fungsi rata-2 (Mean Function)
If you know something about X, this knowledge helps you predict something about Y. @akbardarmawan/3SE1
10
Prediksi terbaik… Bagaimana mengestimasi parameter dengan cara terbaik… @akbardarmawan/3SE1
11
Regresi Linier @akbardarmawan/3SE1
12
Regresi Linier ˆ Y= 𝛽 0 + 𝛽 1 𝑋 Y = b0 + b1Xi Populasi
Koefisien regresi Sampel ˆ Y = b0 + b1Xi @akbardarmawan/3SE1
13
Regresi Linier Model Y X b b + = e Y X Yi Xi
? (the actual value of Yi) Y X b b + = Yi i e Xi X @akbardarmawan/3SE1
14
Regresi terbaik = minimisasi error
Semua residual harus nol Minimum Jumlah residual Minimum jumlah absolut residual Minimum versi Tshebysheff Minimum jumlah kuadrat residual OLS @akbardarmawan/3SE1
15
Ordinary Least Square (OLS)
@akbardarmawan/3SE1
16
Assumptions Linear regression assumes that…
1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1
17
Asumsi lebih lanjut… Alexander Von Eye & Christof Schuster (1998) Regression Analysis for Social Sciences @akbardarmawan/3SE1
18
Asumsi lebih lanjut… Alexander Von Eye & Christof Schuster (1998) Regression Analysis for Social Sciences @akbardarmawan/3SE1
19
Proses estimasi parameter (Drapper & Smith)
@akbardarmawan/3SE1
20
Koefisien regresi @akbardarmawan/3SE1
21
Simbol-2 (Weisberg p. 22) @akbardarmawan/3SE1
22
Makna koefisien regresi
x = 0 ? b0 ≈ ….. b1 ≈ ….. - Tinggi vs berat badan - Nilai math vs stat - Lama sekolah vs pendptn - Lama training vs jml produksi ……. @akbardarmawan/3SE1
23
Regression Picture C B SSE SSR Variability due to x (regression)
yi x y A B C2 SST Total squared distance of observations from naïve mean of y Total variation SSR Distance from regression line to naïve mean of y Variability due to x (regression) SSE Variance around the regression line Additional variability not explained by x—what least squares method aims to minimize @akbardarmawan/3SE1
24
explained by predictors
SST (Sum Square TOTAL) Variance to be explained by predictors (SST) Y @akbardarmawan/3SE1
25
SSE & SSR (SSR) (SSE) X Y Variance explained by X Variance NOT
@akbardarmawan/3SE1
26
explained by predictors
SST = SSR + SSE Variance to be explained by predictors (SST) X Variance explained by X (SSR) Y Variance NOT explained by X (SSE) @akbardarmawan/3SE1
27
Coefficient of Determination
Koefisien Determinasi Coefficient of Determination to judge the adequacy of the regression model Maknanya: …. ? @akbardarmawan/3SE1
28
Koefisien Determinasi
@akbardarmawan/3SE1
29
Salah paham ttg r2 R2 tinggi prediksi semakin baik ….
R2 tinggi model regresi cocok dgn datanya … R2 rendah (mendekati nol) tidak ada hubungan antara variabel X dan Y … @akbardarmawan/3SE1
30
measures the strength of the linear association between two variables.
Korelasi Buktikan…! Pearson Correlation…? Correlation measures the strength of the linear association between two variables. @akbardarmawan/3SE1
31
Korelasi & Regresi 𝑺 𝒀 = 𝑺 𝒀𝒀 𝑺 𝑿 = 𝑺 𝑿𝑿 @akbardarmawan/3SE1
32
Assumptions Linear regression assumes that…
1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1
33
Uji parameter RLS Linear regression assumes that…
1. The relationship between X and Y is linear 2. Y is distributed normally at each value of X 3. The variance of Y at every value of X is the same (homogeneity of variances) 4. The observations are independent @akbardarmawan/3SE1
34
Distribusi sampling b1 @akbardarmawan/3SE1
35
b1 ~ Normal ~ Normal @akbardarmawan/3SE1
36
Uji koefisien regresi @akbardarmawan/3SE1
37
Uji koefisien regresi @akbardarmawan/3SE1
38
Confidence Interval for b1
Selang Kepercayaan koefisien regresi Confidence Interval for b1 @akbardarmawan/3SE1
39
Uji koefisien regresi @akbardarmawan/3SE1
40
Confidence Interval for the intercept
Selang Kepercayaan koefisien regresi Confidence Interval for the intercept @akbardarmawan/3SE1
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.