Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehYuda Baskoro Telah diubah "9 tahun yang lalu
1
BARISAN DAN DERET ARITMETIKA Oleh: Devi Asmirawati, S.Si
2
Setelah mempelajari materi ini anda dapat:
Menemukan rumus barisan dan deret aritmetika
3
MENU BARISAN ARITMETIKA DERET ARITMETIKA
4
Apa yang akan kita pelajari BARISAN DAN DERET ARITMETIKA?
1. Barisan aritmetika Menghitung suku ke-n barisan aritmatika 2. Deret aritmetika Menghitung jumlah n suku pertama deret aritmetika 3. Latihan
5
LETS GO!...
6
Hasan mempunyai sebuah celengan. Hari pertama diisinya Rp 5. 000,00
Hasan mempunyai sebuah celengan. Hari pertama diisinya Rp 5.000,00. Hari berikutnya Hasan mengisi celengannya dengan Rp 500,00, begitu terus setiap hari. Hasan ingin mengetahui berapa banyak isi tabungannya tanpa harus membongkar celengan tersebut.
7
Tolong kalian bantu Hasan mengetahui isi celengannya....
Berapa isi celengan Hasan pada hari pertama, kedua, ketiga, keempat, dan seterusnya? Berapa isi celengan Hasan pada hari ke- n? Tolong kalian bantu Hasan mengetahui isi celengannya....
9
Persoalan Hasan bisa kita selesaikan sebagai berikut:
Pada hari pertama Hasan menabung sebesar Rp 5.000,00 Pada hari kedua Hasan menabung Rp 500,00. Berarti dalam celengan Hasan ada Rp 5.000,00 + Rp 500,00 = Rp 5.500,00 Hari ketiga, Hasan menabung Rp 500,00. Sehingga tabungan Hasan menjadi Rp 5.550,00 + Rp 500,00 = Rp 6.000,00 (Rp merupakan hasil menabung hari pertama dan kedua )
10
Hari keempat diperoleh dari tabungan hari ketiga ditambah Rp 500,00
Hari keempat diperoleh dari tabungan hari ketiga ditambah Rp 500,00. Diperoleh Rp 6.000,00 + Rp 500,00 = Rp 6.500,00 Hari kelima diperoleh dari tabungan hari keempat ditambah Rp 500,00. Diperoleh Rp 6.500,00 + Rp 500,00
11
Kita lihat apa saja yang telah kita peroleh tadi
Hari pertama : U1 = Rp 5.000,00 Hari kedua : U2 = Rp 5.500,00 = Rp 5.000,00 + Rp 500,00 Hari ketiga : U3 = Rp 6.000,00 = = { } + 500 = (500) Hari keempat: U4 = Rp 6.500,00 = = { } + 500 = {( ) + 500} + 500 = (500)
12
Apakah kalian melihat suatu pola dari proses Hasan menabung?
Selalu ditambah Rp 500,00, bukan?
13
Oke, sekarang kita coba tentukan besar tabungan Hasan pada hari ketujuh
Besar tabungan Hasan pada hari ketujuh diperoleh dari tabungan awal (Rp 5.000,00) ditambah 6 hari memasukkan Rp 500,00 Sehingga tabungan Hasan pada hari ketujuh adalah (500) = Rp 8.000,00
14
G o o d . . . ! Berapa besar tabungan Hasan pada hari ke – 10?
Tabungan Hasan pada hari ke-10 adalah (500) = Rp 9.500,00
15
Terima kasih ya kakak, telah membantu saya...
Berapa besar tabungan Hasan pada hari ke – n? G o o d ! Tabungan Hasan pada hari ke-n adalah (n-1)(500) = n Terima kasih ya kakak, telah membantu saya...
16
Anak-anak sekalian, persoalan Hasan tadi merupakan suatu bentuk persoalan dari barisan dan deret Aritmetika
17
Perhatikan kembali persoalan di atas:
Hari pertama : U1 = Rp 5.000,00 Hari kedua : U2 = Rp 5.500,00 Hari ketiga : U3 = Rp 6.000,00 ... Hari ke-n : Un = (n-1)(500) Selisih hari kedua dengan hari pertama, hari ketiga dengan hari kedua, dan seterusnya adalah tetap. Selisih yang tetap ini dinamakan beda
18
Nah, menurut Anda apakah pengertian dari barisan aritmetika?
G o o d ! Barisan aritmetika adalah suatu barisan dengan selisih atau beda antara dua suku yang berurutan selalu tetap.
19
Bagaimana bentuk umum dari barisan aritmetika?
G o o d !
20
Ingat kembali masalah Hasan tadi.
... U1 U2 U3 Un ... ... 5.000 (500) (n-1)(500)
21
Secara umum U1 U2 U3 ... Un a a+ b a+ 2b a+ (n – 1)b ... ...
dengan b: selisih atau beda antara dua suku berurutan b = Un – Un-1 a = U1 : suku pertama Un : suku ke-n Un-1 : suku ke-(n – 1) n : banyak suku
22
Dengan demikian, apa rumus suku ke-n barisan aritmetika?
G o o d ! Un = a + (n – 1)b
23
Contoh Diketahui barisan 1, 3, 5, ... Tentukan: a. Beda b. Suku ke-100 c. Banyak suku pada barisan tersebut jika Un = 41
24
Penyelesaian: 1, 3, 5, ... Suku pertama a = U1 = 1 Beda b = U2 – U1
= 3 – 1 = 2 b. Un = a + (n – 1)b U100 = 1 + (100 – 1)2 = 199 c. Un = a + (n – 1)b 41 = 1 + (n – 1) 2 41 = n – 2 42 = 2n n = 21
25
1 , 4 , 7 , 10 , 13 , 16 , 19 Apa perbedaan dua bentuk di atas? G o o d !
26
Deret aritmetika adalah jumlah dari setiap suku barisan aritmetika
Jadi apakah pengertian dari deret aritmetika? G o o d ! Deret aritmetika adalah jumlah dari setiap suku barisan aritmetika
27
Tentukan jumlah bilangan bulat dari 1 sampai 100
28
Secara umum, jumlah n suku pertama deret aritmetika adalah
Sn = a + (a + b) + (a + 2b) + …+ Un Sn = Un + (Un - b) + (Un- 2b) + …+ a
29
Contoh Hitunglah jumlah deret aritmetika
30
Penyelesaian: Deret aritmetika 4 + 9 + 14 + ... + 104
a = 4, b = 9 – 4 = 5, Un = 104 Un = a + (n – 1)b 104 = 4 + (n – 1)5 n = 21
31
Anak-anak, kalian telah mempelajari bagaimana menentukan rumus suku ke-n dan menghitung jumlah n suku pertama dari barisan dan deret aritmetika. Sekarang saatnya bagi kalian untuk mengasah kemampuan kalian melalui latihan
32
Latihan Tentukan rumus suku ke-n jika diketahui suku pertama 23 dan beda – 4 Tentukan suku ke-100 dari barisan 5, 11, 17, 23, 29, . . . Hitunglah jumlah deret aritmetika Hitunglah jumlah dari kelipatan 3 antara 9 dan 1344
33
SELAMAT BELAJAR
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.