Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Perencanaan Lintasan Kendaraan dengan Menggunakan Metode Algoritma Genetika Disusun Oleh: Ainiyatul Muthoharo (103224202)

Presentasi serupa


Presentasi berjudul: "Perencanaan Lintasan Kendaraan dengan Menggunakan Metode Algoritma Genetika Disusun Oleh: Ainiyatul Muthoharo (103224202)"— Transcript presentasi:

1 Perencanaan Lintasan Kendaraan dengan Menggunakan Metode Algoritma Genetika Disusun Oleh: Ainiyatul Muthoharo ( )

2 Algoritma genetika adalah algoritma pencarian yang didasarkan atas mekanisme evolusi biologis. Individu yang lebih kuat (fit) akan memiliki tingkat survival dan tingkat reproduksi yang lebih tinggi jika dibandingkan dengan individu yang kurang fit. Pada implementasi program algoritma genetika dapat mencari jalan terpendek yang bebas hambatan. Pada pengujian dilakukan dengan titik acuan dan populasi yang berbeda, yang menghasilkan jarak terpendek. LATAR BELAKANG

3  Mencari atau menemukan jalur terpendek yang tidak melalui penghalang pada sebuah peta dari satu titik awal sampai pada titik tujuan dengan menggunakan metode algoritma genetika TUJUAN

4 Aplikasi AG meliputi perencanaan lintasan, pengolahan sinyal, fungsi optimisasi pada perencanaan sistem tenaga listrik. Perencanaan lintasan kendaraan dapat diterapkan menggunakan AG dengan cara menghitung serta mendapatkan sebuah lintasan pada suatu permukaan yang sebelumnya telah dibagi menjadi bagian-bagian lebih kecil. Perencanaan lintasan dengan algoritma genetika ini cocok untuk sistem bergerak dimana lokasi awal dan tujuan telah ditentukan terlebih dahulu. Pada teknik perencanaan lintasan ada beberapa kriteria dasar, seperti lintasan yang tidak berpotongan dengan benda penghalang, lintasan dengan jarak terpendek. KAJIAN TEORI

5 METODE PERCOBAAN

6 Inisialisasi awal Penentuan ukuran populasiPenentuan ukuran kromosonPenentuan jumlah penghalangPenentuan posisi dan radius dari penghalang Nilai mutation rate (Pm) dan crossover rate (Pc) Penentuan ukuran peta lingkunganPenentuan titik awal dan titik tujuan

7 Evaluasi Memastikan tidak ada titik acuan yang berada pada titik awal (Sp) maupun titik tujuan (Ep) Menentukan titik yang berada pada penghalang

8 Seleksi Mencari nilai kebugaran (fitness) Nilai fitness merupakan panjang lintasan Nilai fitness terbaik kromosom yang memiliki jarak terpendek roulette wheel selection Kromoson menempati potongan lingkaran pada roda roulette secara proporsional sesuai dengan nilai fitnessnya. Kromoson yang memiliki nilai fitness lebih besar menempati potongan lingkaran yang lebih besar.

9 Operator genetika Fungsi crossover Crossover point dipilih secara acak untuk setiap generasi. Fungsi mutasi Mutasi bekerja pada bit demi bit

10  Gambar 7: generasi ke-10, 1 titik acuan, jarak =  Gambar 8: generasi ke-100, 1 titik acuan, jarak = Hasil yang ditemukan pada iterasi ke-100 lebih baik daripada hasil pada iterasi ke-10. PEMBAHASAN

11  Gambar 9: generasi ke-10, 2 titik acuan, jarak =  Gambar 10: generasi ke-100, 2 titik acuan, jarak = Hasil yang ditemukan pada iterasi ke-100 lebih baik daripada hasil pada iterasi ke-10.

12  Gambar 11: generasi ke-10, 4 titik acuan, jarak =  Gambar 12: generasi ke-100, 4 titik acuan, jarak = Hasil yang ditemukan pada iterasi ke-100 lebih baik daripada hasil pada iterasi ke-10.

13  Algoritma genetika memiliki kemampuan untuk melakukan pendekatan pada masalah perencanaan lintasan kendaraan.  Lintasan terpendek didapat pada generasi ke-100 dengan 2 titik acuan dengan jarak Hal ini menunjukkan bahwa dengan 2 titik acuan algoritma genetika telah dapat menemukan hasil paling optimum. KESIMPULAN

14


Download ppt "Perencanaan Lintasan Kendaraan dengan Menggunakan Metode Algoritma Genetika Disusun Oleh: Ainiyatul Muthoharo (103224202)"

Presentasi serupa


Iklan oleh Google