Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

1 MANAJEMEN EKOSISTEM. Ekosistem Ekologi Managemen Ekosistem 2.

Presentasi serupa


Presentasi berjudul: "1 MANAJEMEN EKOSISTEM. Ekosistem Ekologi Managemen Ekosistem 2."— Transcript presentasi:

1 1 MANAJEMEN EKOSISTEM

2 Ekosistem Ekologi Managemen Ekosistem 2

3 Terminologi: Biosfir: – Permukaan bumi – Terdiri atas banyak ekosistem Ecosystem – Sistem yang terdiri atas komponen abiotik dan biotik (produsen, konsumen, dan pengurai), keduanya saling tergantung – Ukuran ekosistem bisa besar atau kecil 3

4 Komponen abiotik (non-living components) di lingkungan –Air, angin, atmosfir (udara, angin), sinar matahari, Nutrients di tanah dan air, Heat (temperatur), Tanaman yang sudah mati (humus), etc. Biotic factors ( Living organisms) - – All the living organisms that inhabit an environment. –Plants, Animals, Insects, Microorganisms, etc. 4

5 Produsen (mostly plants) – Tanaman hijau Consumers – Herbivores and carnivores – Missing links in food chain kill all above Decomposers – Fungi, bacteria, insect 5

6 Population – One species live in one place at one time Community – All populations (diff. species) that live in a particular area. 6

7 Habitat – Physical location of community - The place a plant or animal lives Organism – Simplest level of organization 7

8 EKOLOGI Origin of the word…”ecology” Greek origin OIKOS = household LOGOS = study of… Study of the “house/environment” in which we live. 8

9 Ecology is study of interactions between biotic and abiotic components Ecology views each locale as an integrated whole of interdependent parts that function as a unit. Ecology is an integrated and dynamic study of the environment. 9

10 Ekologi merupakan kajian tentang interaksi- interaksi yang terjadi diantara organisme dan lingkungannya: Biotik  Abiotik Kajian ini menerangkan bagaimana organisme hidup saling mempengaruhi dan mempengaruhi tempat (lingkungan) dimana mereka hidup 10

11 All organisms depend on others directly or indirectly for food, shelter, reproduction, or protection. 11

12 Abiotic factors- the nonliving parts of an organism’s environment. Abiotic factors affect an organism’s life. 12

13 13

14 Ecosystems All life is connected Food chain is a web in reality Broken links may destroy the web or force reorganization 14

15 Elemental Cycles Nitrogen cycle – Atmospheric N 2 fixated by plants and bacteria to make NH 3 and other compounds – Bacteria convert NH 3 into NO 2 and NO 3 which plants use to make amino acids – Amino acids eaten by animals end up in waste products to decompose – Some bacteria remove NO 2 from soil to go back to N 2 in the air 15

16 16

17 17

18 18

19 Carbon Cycle Diagram Carbon in Atmosphere Plants use carbon to make food Animals eat plants and take in carbon Plants and animals die Decomposers break down dead things, releasing carbon to atmosphere and soil Bodies not decomposed — after many years, become part of oil or coal deposits Fossil fuels are burned; carbon is returned to atmosphere Carbon slowly released from these substances returns to atmosphere 19

20 The Carbon Cycle 20

21 Human Impact on Carbon Cycle: Fossil fuels release carbon stores very slowly Burning anything releases more carbon into atmosphere — especially fossil fuels Increased carbon dioxide in atmosphere increases global warming Fewer plants mean less CO 2 removed from atmosphere 21

22 What We Need to Do To Reduce Carbon Emission Burn less, especially fossil fuels Promote plant life, especially trees 22

23 Pengendalian Pupulasi Pertumbuhan Eksponential – Mother & Father have multiple children (2 or more) increases population exponentially – Lifespan affects population but not exponentially 23

24 Kapasitas Tampung (Carrying Capacity) Oxygen supply (more water organism issue) Food Supply Disease Predators (not much for humans) Limited available space 24

25 Impact on Environment CO 2 emissions related to overall population CO 2 is greenhouse gas Water usage (part of food supply) Waste products (rate of decomposition) 25

26 Ekosistem memberi paradigma terbaik untuk mengintegrasikan komponen-komponen biotik (makluk hidup) dan abiotik (lingkungan), untuk menyelesaikan masalah riil  Adaptable System Tugas pengelolaan lingkungan: – Stabilitas struktur dan fungsi lingkungan – Juga kaitannya dengan aspek sosial, ekonomi, dan cultural (interaksi manusia dan lingkungannya) 26

27 Klasifikasi Sistem: Berdasarkan fungsinya Isolated System – Tidak terjadi import dan ekspor material dan energi Closed System – Terjadi import dan ekspor material, tetapi tidak energi Open System – Batas-batasnya memungkinkan terjadinya pertukaran (impor dan ekspor) material dan energi – Kebanyakan ekosistem bumi termasuk dalam kategori sistem ini 27

28 Klasifikasi Sistem: Berdasarkan Intervensi Manusia Natural System – Unaffected by human interference Modified System – Affected to some extent by human interference Controlled System – Fully affected by human interference, by accident or by design – Manusia berperan utama dalam sistem tersebut (misalnya sistem pertanian) 28

29 Hubungan Antar Komponen Ekosistem 29

30 Ukuran fisik ekosistem dapat sangat kecil s/d sangat besar Ekosistem biasanya dianalisis oleh system analyst Ide manajemen lingkungan adaptif mengadopsi Pendekatan Ekosistem 30

31 Pendekatan Studi Ekosistem a.Conventional approach b.Abstraction of the system into a model leading to interpretation of mathematical conclusions 31

32 Ecosistem dapat mengalami gangguan  Ekosistem perlu diawasi dan dilindungi dari ancaman Ekosistem dapat mengalami perubahan, baik secara alami maupun antropologis (pengaruh manusia)  Perubahan dapat terjadi secara tiba-tiba, atau bersifat gradual Pengelola Lingkungan tidak dapat mengelola ekosistem itu sendiri, melainkan mengelola interaksi dengan manusia dengan lingkungan 32

33 Konsep Manajemen Ekosistem Konsep Ekosistem: Suatu kesatuan yang terintegrasi Melihat sistem secara holistik bagaimana komponen-komponen yang terlibat saling berinteraksi dan berkerja secara bersama- sama Dapat diterapkan pada berbagai kasus, misalnya urban ekosistem, agroekosistem, dan sistem industri 33

34 Pengelolaaan Lingkungan agak sama dengan Pengelolaan Pabrik, yaitu: To improve dan sustain output, dan to reduce costs Konsep Ekosistem menekankan pada aspek keberkelanjutan, dengan tujuan menjaga integritas ekosistem, dan jika mungkin, menghasilkan pangan atau komoditi lainnya 34

35 Pendekatan Ekosistem membantu dalam mendefinisikan skala spasial dan temporal pengelolaan Analisis Ekosistem: – Ekosistem dapat dianalisis menggunakan teori sistem  Teori sistem membuat situasi yang kompleks dan dinamis menjadi lebih dapat dimengerti dan diprediksi 35

36 Teori sistem berasumsi: Measureable Causes produce Measureable Effects Ada kecenderungan peningkatan usaha untuk mengkombinasikan model ekologis dengan dengan aspek ekonomis 36

37 Contoh Manajemen Ekosistem Pengelolaan Daerah Pesisir Pengelolaan DAS (Watershed, Catchment Area) Pengelolaan Agroekosistem Pengelolaan Urban Ecosystem 37

38 Pengelolaan Daerah Pesisir Berbagai aktivitas manusia berkonsentrasi di pesisir, kondisi pesisir dipengaruhi oleh berbagai fakror  Perlu pengelolaan lingkungan, terutama pesisir yang rawan banjir, erosi, abrasi, eksploitasi mangrove Global warming  Permukaan air laut meningkat  Pengelolaan pesisir menjadi lebih penting 38

39 Pengelolaan DAS (Watershed, Catchment Area) DAS merupakan unit biogeofisik, biasanya dapat ditentukan batas-batasnya dengan baik, dimana agroekosistem, aktivitas manusia, dan sumberdaya air saling berinteraksi (saling mempengaruhi) 39

40 Peneliti tertarik untuk mengetahui bagaimana perubahan penggunaan lahan (land use) berpengaruh pada hidrologi Effek (Vegetasi, tanah)  Output (aliran air: kualitas & kuantitas) Penegelolaan DAS dapat dilakukan dengan model Manajemen Participatory 40

41 Pengelolaan Agroekosistem Agroekosistem adalah ekosistem yang dimodifikasi oleh manusia untuk menghasilkan pangan atau produk lainnya Sifat Agroekosistem: – Produktivitas – Stabilitas – Sustainibilitas – Equalibilitas 41

42 Produktivitas: Output, yield, perolehan atau nit income from a valued product per unit of resource input. Contoh: kg padi / ha, kalori/ha Stabilitas: Stabilitas terhadap perubahan, misalnya terhadap fluktuasi iklim Sustainibilitas: Kapasitas sistem agroekosistem dalam mempertahankan produktivitas terhadap perubahan lingkungan dan degradasi akibat eksploitas Equalibilitas: Pemerataan distribusi 42

43  Tujuan Pengegelolaan agar keempat aspeks tersebut optimum Kadang terjadi kontradiksi: Produktivitas ↑  sustainability  Produktivitas   sustainability↑  Ilmu pengatahuan perlu diaplikasikan Tujuan pengelolaan agroekosistem lebih sering pada aspek sosioekonomi, dari pada aspek ekologis 43

44 Pengelolaan Urban Ecosystem Pendekatan ekosistem dapat diterapkan pada kasus urban untuk mengidentifikasi strategi guna mereduksi, menfasilitasi pengelolaan limbah, kegiatan pertanian dengan penyediaan lapangan pekerjan 44

45 Applied Ecology 45

46 Depends on: - number of species and abundance of each species in an ecosystem Growth of population depends on: - Abiotic factors - Biotic factors Index of Diversity: d = N(N-1)/Σn(n-1) d: index of diversity N: total number of organisms of all species in area n: total number of organisms of each species in area Diversity 46

47 Impact of Humans Manusia memiliki potensi besar “acaman” bagi hewan, tanaman, dan lingkungan Pengaruh manusia begitu besar karena: - Teknologi mengubah dunia bergitu cepat - Jumlah populasi manusia meningkat pesat - Menggunakan sumberdaya alam dan menghasilkan limbah 47

48 Human Population Growth Manusia mampu beradaptasi untuk survive di hampir semua habitat dan iklim Populasi manusia meningkat tajam dan mengancam lingkungan The population will eventually be limited by these factors: - food and water supply - disease and pollution - over-crowding - sudden changes in climate 48

49 Atmospheric Pollution: Caused by combustion, exhaust fumes, livestock, waste dumps Effects: - smoke, which damages air quality - carbon dioxide and Methane, which cause climate change - sulphur dioxide and nitrogen dioxide, which mix with rainwater to form acid rain - carbon monoxide, which is poisonous to humans and animals Pollution 49

50 Water Pollution: Caused by deposition of substances into seas, lakes, rivers Effects: - sewage and oil, which destroy habitats and kill animals - fertilisers and pesticides, which damage ecosystems 50

51 Ecological Niche Describes how organisms in an ecosystem interact What it does that affects or contributes to its surroundings Includes: habitat, relationships and nutrition 51

52 InteractionExamples: Herbivory A primary consumer feeds on a producer Predation A consumer feeds on another consumer Mutualism 2 species live together with each providing benefit to the other via the relationship Parasitism A parasite lives on or within a host and obtains food from it. The parasite benefits, the host is always harmed Competition 2 species compete for the same resource if there is not enough to support both Examples of Relationships (Interactions) Between Species

53 Agroecosystems Definition: formed by interactions between biotic (plants, microbes etc.) and abiotic (temp. humidity etc.) factors in a defined area, an agroecostystem influences the distribution and population of living organisms Differs from natural ecosystems: - maintenance at an early successional state - monoculture - crops planted in rows - simplification of biodiversity - intensive tillage (untuk menghasilkan pangan) - use of organisms and artificially selected crops 53

54 Merujuk pada kajian fenomena ekologis di lahan pertanian, seperti hubungan antara predator dan mangsa Membutuhkan input untuk mempertahankan kesetimbangan, penggunaan pestisida mengganggu kesetimbangan dengan terbunuhnya organisme Maintenance keeps pest populations at manageable levels: - ecosystems are ever changing systems - ecosystems follow food webs - All elements of an agroecosystem are closely linked. Disturbance to one has effects on others 54

55 Humans have a huge impact on the planet. This includes intensive farming, selective breeding and pesticides/fertilisers Impacts of Monoculture: 1.Genetic diversity is reduced, crops susceptible to disease 2.Fertilisers pollute groundwater 3.Pesticides pollute groundwater 4.Species diversity is reduced 5.Countryside less attractive Crop rotation: breaks pests’ life cycles, improves soil texture and can increase soil nitrogen 55

56 Inorganic fertilisers are most common but affect the environment Benefits of organic fertilisers to ecosystem: 1.Compounds decompose slowly and prevent leaching 2.They are cheap 3.Can be disposed of on fields and not only in landfill sites 4.Improves soil structure and improves drainage and aeration 56

57 Intensive farming can damage the environment. e.g. 57

58 Pesticides can harm larger organisms. e.g. 58

59 Fishing: Unsustainability: the using up of resources faster than they are produced so that they will not continue in the future e.g. North Sea Cod are over-fished so are reproducing slower than are being caught. Effect  population is heavily declining 59

60 Forestry: Humans burn wood or clear land for farming  deforestation: 1) destroys habitats 2) causes soil erosion  barren land and flooding 3) causes pollution from combustion 4) increased levels of carbon dioxide as loss of photosynthesis 60

61 Aquatic biomes cover about 75% of the earth’s surface - Wetlands - Lakes - Rivers, streams - Intertidal zones - Oceanic pelagic biome - Coral reefs - Benthos 61

62 Industrial Ecology Lecture 13 62

63 Overview Terminology Design for the Environment Natural Systems as Models Directions in Industrial Ecology Examples 63

64 Some Terminologies Ecology: the study of the earth’s life support systems, of the interdependence of all beings on Earth (Odum, E.) Metabolism: sum of the processes sustaining the organism: production of new cellular materials (anabolism) and degradation of other materials to produce energy (catabolism) (Ray) 64

65 Industrial Ecology: Aplikasi teori ekologi untuk sistem industri (Rejeski); melihat dunia industri sebagai suatu sistem alami, menggabungkan ekosistem lokal dengan biosfir (Lowe) Industrial Metabolism: Aliran material dan enegi melalui sistem industri dan interaksi aliran tersebut dengan siklus biogeokimia (Erkman) Industrial Symbiosis: Suatu sistem industri dimana waste dari proses sebagai sumberdaya (resources) bagi proses lainnya 65

66 More Terminology Eco-Efficiency: Integrasi efisiensi ekonomis (financial return, profit, productivity, customer perception) dan efesiensi lingkungan (energy, emissions, environmental impacts. Ecofactory: Desain teknologi sistem produksi terintergrasi (integrated design of production systems), mencakup DFE (Design for Environment) pada tingkat produk dan proses – dengan teknologi disassembling, reuse and materials recycling (Agency for Industrial Science and Technology, Japan) 66

67 More Terminology Design for the Environment: Memperhatikan semua potensi implikasi pada lingkungan dari suatu produk: energy and materials used in the product; its manufacture and packaging; transportation; consumer use, reuse, and recycling; and disposal. DfX Design for Recycling Design for Disassembly Design for Remanufacturing 67

68 Resource & energy flows Linear model unlimited resources unlimited waste ecosystem 68

69 Resource & energy flows Semi-cyclical model limited resources and energy limited waste ecosystem 69

70 energyecosystem Source: Graedel, T.E., “On the concept of industrial ecology”, Annual Review of Energy and Environment, no. 21, 1996, p. 77. Resource & energy flows Cyclical model 70

71 Natural Systems Function as an integrated whole Minimize waste: Tanaman atau hewan hidup atau yang sudah mati dan limbahnya adalah “food” bagi something Decomposers (microbes and other organisms) consume waste and are eaten by other creatures (makluk lain) in the food chain 71

72 Toksin tidak disimpan atau ditransfer dalam jumlah banyak (borongan) tetapi disintesis dan digunakan sejumlah yang diperlukan oleh spesies secara individu Materials are continually circulated and transformed in elegant ways. Nature runs largely off solar energy Nature is dynamic and information driven, identity of ecosystem players is defined in process terms 72

73 The Industrial Ecology Paradigm Bumi adalah sistem ekologis tertutup: the scale and design of development is inconsistent with long-term ecological survival Human society and natural systems have co-evolved – Alam memiliki nilai intrinsik, ditampakkan melalui aktivitas ekonomi – Moral dan etika tindakan ekonomi harus memperdulikan lingkungan 73

74 “Ecologize Economy”, an economy based on service, not goods, or quantity, of life Moral/ethical transformation to instill environmental concerns Technological realism, precautionary principle for uncertainty 74

75 Industry mimics nature (Industri meniru alam) – Waste from one organism is food for another – Everything is connected by cyclic processes – Living off nature’s interest Shift in thinking – Past: Remediation – Present: Treatment, storage, and disposal – Future: Industrial metabolism and the industrial ecosystem 75

76 Management of the nature-industry interface Ultimate goal: bringing the industrial system as close as possible to being a closed-loop system with near complete recycling of materials. Is zero waste achievable, considering thermodynamics, or is zero environmental impact a more feasible target? 76

77 Framework for Industrial Ecology 1.Improve metabolic pathways of industrial processes and systems 2.Create loop-closing industrial systems 3.Dematerialize industrial output 4.Systematize patterns of energy use 5.Balance industrial system input and output to ecosystem activity 6.Align policy to conform with long-term industrial system evolution 7.Create new action-coordinating structures, communicative linkages, and information 77

78 Industrial Metabolism A “Big Picture” analytic tool developed by Robert Ayres Examination of the total pattern of material and energy flows form initial extraction of resources to final disposal of wastes Factors in the real value of nonrenewable resources and environmental pollution, gives value to externalities 78

79 Can be used for regions (the Rhine basin), specific industries (aluminum) or specific materials (heavy metals) Suggests some measures of sustainability: ratios of potential to actual recycled materials, virgin to recycled materials, materials productivity 79

80 Problem On average, only 6% of resources taken from the environment end as products. Other 94% is waste. Source: Lowe, Warren, Moran, Is it really waste? Or is it a by-product that can be used elsewhere? 80

81 Industrial Symbiosis Most commonly understood meaning of industrial ecology Waste materials and energy serving as inputs or resources for other industrial processes Also referred to as “By-product synergy,” “green twinning,” “zero-waste/zero- emissions,” “cradle-to-cradle eco-efficient manufacturing” Evolving into the concept of an Eco-Industrial Park where co-locating 81

82 Brewery Mushroom Growing Chicken RaisingMethane Gas ProductionFish Ponds Conventional Waste Management Brewery waste dumped into oceans to destroy coral reefs Muck dumped on fields Waste piles up Methane vented Muck cleaned out 82

83 Brewery Mushroom Growing Chicken RaisingMethane Gas ProductionFish PondsHydroponic Gardening Industrial Ecology Brewery waste fertilizes mushrooms Mushroom residue feeds chickens Chicken waste is composted Solids become fish food Nutrients used in gardens 83

84 Back to Industrial Ecology The name “industrial ecology”- why? – Models of non-human biological systems and their interactions with nature are instructive for industrial systems that we design and operate – The biological model is clever, a closed-loop materials system – Recent better understanding of the materials and energy flows of biological systems 84

85 Questions: – How do you apply the biological principles of resilience (kegembiraan), limiting factors, other rules? – What about the low efficiency of natural systems (<5%)? Bottom Line: – Lessen (Kurangi) (dramatically the impacts of our industrial system) – Management of the industry-natural systems interface, match input-output of the manmade world to the constraints of the biosphere 85

86 Implementing Industrial Ecology Technical Basis – Choose material – Design the product – Recover the material – Monitor the Situation Institutional Barriers and Incentives – Market and informational barriers – Business and Financial barriers – Regulatory barriers – Legal Barriers Regional Strategies – Ecoparks, Eco-Factories 86

87 Candidates for Lessening Impacts Zero Emissions Systems – Orderly progression from Type I (high throughput mass and energy, no resource recovery) to Type III (closed loop) – Eliminate ‘leaks’ Material Substitution – More durable, less waste, more recyclable 87

88 Dematerialization – Theory of Dematerialization: the more affluent a society becomes, the mass of materials required diminishes over time – Must result in less waste to be effective Functionality Economy – What is the function? Do we need automobiles? Waste from telephone disposal (old phones were leased and returned!) 88

89 Design for the Environment (DFE) Considers all potential implications of a product – Energy & materials – Manufacture & packaging – Transportation – Consumer use, reuse or recycling, and disposal A holistic design process Example: automobile bodies (Iron, plastics, & aluminum) 89

90 Tradeoffs: virgin vs. recycled, energy at each stage, materials recyclability, manufacturability, costs Challenges: – Adequate database about materials and their impacts – Concurrent engineering to work across R&D, marketing, quality.. – Public sector involvement for defining values for trade-off 90

91 DFE Example - Xerox Raw Materials New Components Build Certified Reprocessing Deliver Customer Use Closed Loop Recycling Third Party Recycling Alternative Uses Return to Suppliers Materials for Recycling Sort/Inspect Disposal Goal: Zero to Landfill Dismantle Remove 91

92 The Eco-Industrial Park (EIP) A community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaborating in the management of environmental and resource issues. The interactions among companies resemble the dynamics of a natural ecosystem where all materials are continually recycled. Industrial Park: restricted meaning in terms of geography and ownership. 92

93 An EIP is a relate estate property that must be managed to bring a competitive advantage to its owners. An EIP is a “community of companies” that must manage itself to provide benefits for its members. Decisions are based on maximizing the profitability of the EIP as a whole Transfer prices negotiated so each member will be as profitable as without the EIP 93

94 94 Selamat Belajar


Download ppt "1 MANAJEMEN EKOSISTEM. Ekosistem Ekologi Managemen Ekosistem 2."

Presentasi serupa


Iklan oleh Google