Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

BAGIAN 2: ARGUMEN LOGIKA MATEMATIKA. Definisi Argumen kumpulan pernyataan, baik tunggal maupun majemuk dimana pernyataan-pernyataan sebelumnya disebut.

Presentasi serupa


Presentasi berjudul: "BAGIAN 2: ARGUMEN LOGIKA MATEMATIKA. Definisi Argumen kumpulan pernyataan, baik tunggal maupun majemuk dimana pernyataan-pernyataan sebelumnya disebut."— Transcript presentasi:

1 BAGIAN 2: ARGUMEN LOGIKA MATEMATIKA

2 Definisi Argumen kumpulan pernyataan, baik tunggal maupun majemuk dimana pernyataan-pernyataan sebelumnya disebut premis-premis dan pernyataan terakhir disebut konklusi/ kesimpulan dari argumen.

3 Definisi Argumen Sekumpulan proposisi sedemikian sehingga salah satu proposisinya ditegaskan atas dasar dari proposisi lainnya. Proposisi yang ditegaskan disebut konklusi sedangkan proposisi yang menegaskan disebut premis Predikat untuk argumen bukan benar atau salah tetapi sah (valid) atau tidak sah (tidak valid)

4 Contoh Argumen 1. Premis 1: Jika hari ini terang maka upacara bendera akan dilaksanakan Premis 2: hari ini terang Konklusi: Upacara bendera akan dilaksanakan Argumen di atas dapat dinyatakan dalam bentuk: 1. p ⇒ q 2. p / ∴ q Atau p ⇒ q p ∴ q

5 1. ( p  q )  ( r  s ) 2. ~ q v ~ s /  ~ p v ~ r Contoh Argumen yang lain

6 Suatu argumen dikatakan sah/valid jika argumen tersebut dinyatakan dalam suatu implikasi sedemikian sehingga premis-premisnya merupakan anteseden, konklusinya merupakan konsekuen, dan implikasi tersebut merupakan implikasi logis BUKTI KEABSAHAN ARGUMEN

7 Tabel Kebenaran Aturan Penyimpulan dan Aturan Penggantian

8 Contoh Buktikan keabsahan argumen 1. p  q 2.~ q /  ~p Menggunakan tabel kebenaran Penyelesaian pq-p-q P ⇒q [(P ⇒q )  -q][(P ⇒q )  -q] ⇒-p BBSSBSB BSSBSSB SBBSBSB SSBBBBB Karena dari tabel kebenaran di atas menunjukkan tautologi, maka argumen sah

9 Soal latihan 1. Buktikan masing-masing argumen berikut ini sah dengan menggunakan tabel kebenaran a)1. p ⇒ q 2. p / ∴ q b) 1. p ⇒q 2. –q / ∴-p c) 1. (p ⇒q)  (r ⇒s) 2. p v r / ∴ q v s d) 1. p ⇒ q 2. –p / ∴ -q e) 1. p ⇒ q 2. q / ∴ p f) 1. e  ( f  ~g) 2. ( f v g )  h 3. e /  h

10 2. Selidikilah apakah argumen berikut valid atau tidak Soal latihan a) 1. p  q 2. p ⇒ r / ∴ r b) 1. p ⇒ q 2. –(q  r)/ ∴ p ⇒ -r c) 1. p  q 2. p v r ⇒ s /∴ p  s d) 1. p ⇒ -q 2. –q ⇒ -r 3. s  r /∴ - p e) 1. p ⇒ - (q  r) 2. –(q  r) ⇒ -s 3. t v s/∴ - p v t


Download ppt "BAGIAN 2: ARGUMEN LOGIKA MATEMATIKA. Definisi Argumen kumpulan pernyataan, baik tunggal maupun majemuk dimana pernyataan-pernyataan sebelumnya disebut."

Presentasi serupa


Iklan oleh Google