Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

SISTEM BILANGAN & KODE Tri Wahyu Agusningtyas - 41812120039.

Presentasi serupa


Presentasi berjudul: "SISTEM BILANGAN & KODE Tri Wahyu Agusningtyas - 41812120039."— Transcript presentasi:

1 SISTEM BILANGAN & KODE Tri Wahyu Agusningtyas

2 Dasar dari Sistem Bilangan O Bilangan ialah suatu jumlah dan suku-suku angka. Dimana tiap suku angka adalah merupakan hasil perkalian antara angka dengan hasil perpangkatan dan bilangan dasar, dimana pangkat ini sesuai dengan letak suku angka tersebut. Contoh: Bilangan 127 dalam sistem bilangan dasar sepuluh dapat diuraikan sbb. (127) 10 = 1 x x x 10 0 angka(digit) suku angka bil.dasar pangkat

3 Sistem Bilangan Dasar Sepuluh (Desimal) Yaitu sistem bilangan yang biasa kita pakai, dimana menggunakan kombinasi angka-angka dan not sampai dengan sembilan. Contoh: 123, dibaca sebagai seratus dua puluh tiga Sistem Bilangan Dasar Dua (Sistem Binair) Mempunyai bilangan dasar (base) = 2, karena hanya mengenal 2 notasi yaitu 0 dan 1. Sistem bilangan dasar dua ini dibentuk dengan kombinasi dari dua notasi diatas. Digunakan untuk perhitungan didalam komputer, karena komponen-komponen dasar komputer hanya dua keadaan saja yaitu hidup dan mati. Contoh : (1011) 2 = 1 x x x 2 0 = (11) 10

4 Sistem Bilangan Dasar Enam Belas (Sistem Heksadesimal) Mempunyai bilangan dasar (base) = 16. Kombinasi dari system bilangan heksadesimal ini dibentuk dari bilangan 0 sampai 9 dan abjad A sampai F. Contoh : (AF01) 16 = A x F x x x 16 0 Sistem Bilangan Dasar Delapan (Sistem Oktadesimal) Mempunyai bilangan dasar (base) = 8. Kombinasi dari system bilangan oktadesimal ini dibentuk dari bilangan 0 sampai 7. Contoh : (701) 8 = 7 x x x 8 0 = (449) 10

5 Macam-macam Konversi a) Konversi dari system desimal ke system binair 1) Bilangan Bulat Contoh : (235) 10 = (…………….) Hasilnya: ( )

6 Macam-macam Konversi a) Konversi dari system desimal ke system binair 2) Bilangan Pecahan Contoh : (0,625) 10 = (………..) 2 0,625 2 x 11,250 2 x 00,500 2 x 11,000 Hasilnya : ( 0.101) 2

7 Macam-macam Konversi b) Konversi dari system binair ke system desimal 1) Bilangan bulat Contoh : (10111) 2 = ( ……………) x xxxx = (23) 10

8 Macam-macam Konversi b) Konversi dari system binair ke system desimal 2) Bilangan Pecahan Contoh : (0,111) 2 = ( ……………) xxxx /4 +1/8 +1/16 = (0,4375) 10

9 Macam-macam Konversi c) Konversi binair ke bilangan heksa desimal 1) Bilangan bulat Contoh : ( ) 2 = ( ………….) D B B(1DBB) 16 2) Bilangan pecahan Contoh : ( ) 2 = (………….) E D D 8(.EDD8) 16

10 Macam-macam Konversi Tabel 6.1 Dasar bilangan Desimal, Heksadesimal dan Binair DesimalHeksadesimalBinair ABCDEF ABCDEF

11 Macam-macam Konversi d) Konversi bilangan heksadesimal ke bilangan binair Contoh : (ABC097) 16 = (………….) 2 A B C Hasilnya ( ) 2 e) Konversi bilangan oktadesimal ke bilangan binair Contoh : (732) 8 = (………) Hasilnya( ) 2

12 Macam-macam Konversi f) Konversi bilangan desimal ke bilangan oktadesimal Contoh : ( 234) 10 = ( ……………) Hasilnya ( 352) 8

13 Macam-macam Konversi g) Konversi bilangan heksadesimal ke bilangan oktadesimal Contoh : (AF821) 16 = ( …………..) 8 Langkah 1: Konversi dari bilangan heksadesimal ke bilangan binair A F Hasilnya : Langkah 2: Konversi dari bilangan binair ke bilangan oktadesimal Hasilnya :

14 Penjumlahan Bilangan 1) Penjumlahan Bilangan Desimal a) (125) 10 + (200) 10 = (325) 10 b) (780) 10 + (236) 10 = (1016) 10

15 Penjumlahan Bilangan 2) Penjumlahan Bilangan Binair a) (1000) 2 + (111) 2 = (1111) 2 b) (1011) 2 + (1110) 2 = (11001) 2

16 Penjumlahan Bilangan 3) Penjumlahan Bilangan Oktadesimal a) ( 235) 8 + (122) 8 = (357) 8 b) (457) 8 + (263) 8 = (743) 8

17 Penjumlahan Bilangan 4) Penjumlahan Bilangan Heksadesimal a) (345) 16 + (269) 16 = AE(5AE) 16 b) (8DBE) 16 + (CF01) 16 = 8DBE CF CBF(15CBF) 16

18 Pengurangan Bilangan 1) Pengurangan Bilangan Desimal a) (937) 10 – (824) 10 = (113) 10 b) (785) 10 – (398) 10 = (384) 10

19 Pengurangan Bilangan 2) Pengurangan Bilangan Binair a) (1110) 2 – (110) 2 = (1000) 2 b) (11001) 2 – (111) 2 = (10010) 2

20 Pengurangan Bilangan 3) Pengurangan Bilangan Oktadesimal a) ( 765 ) 8 – (342) 8 = (423) 8 b) (432) 8 – (276) 8 = (134) 8

21 Pengurangan Bilangan 4) Pengurangan Bilangan Heksadesimal a) (9AB801) 16 – ( ) 16 = 9AB (122200) 16 b) (D237) 16 – ( 1918) 16 = D C91F(C91F) 16

22 Kode yang mewakili data Suatu komputer yang berbeda menggunakan kode biner untuk mewakili suatu karakter. Komputer 1 byte untuk 4 bit menggunakan kode biner yang berbentuk kombinasi 4 bit yaitu BCD (Binary Coded Decimal). Komputer yang menggunakan 1 byte untuk 6 bit, menggunakan kode biner dengan kombinasi 6 bit yaitu SBCDIC (Standard Binary Coded Decimal Interchange Code). Komputer 1 byte untuk 8 bit menggunakan kode biner dengan kombinasi 8 bit yaitu EBCDIC (Extended Binary Coded Decimal Interchange Code) atau ASCII (American Standard Code for Information Interchange). a) BCD (Binary Coded Decimal) BCD merupakan kode biner yang digunakan hanya untuk mewakili nilai digit decimal saja, yaitu angka 0 sampai dengan 9. Menggunakan kombinasi 4-bit, sehingga hanya 10 kombinasi yang dipergunakan

23 Kode yang mewakili data Tabel 6.2 BCD 4-bit Kode BCD yang orisinil sudah jarang dipergunakan untuk komputer generasi sekarang, karena tidak dapat mewakili huruf atau simbol- simbol karakter khusus. BCD dipergunakan pada komputer generasi pertama. DesimalBCD 4 bit

24 Kode yang mewakili data b) SBCDIC (Standar Binary Coded Decimal Interchange Code) Merupakan kode biner yang dikembangkan dari BCD, BCD dianggap tanggung, karena masih ada 6 karakter kombinasi yang tidak dipergunakan, tetapi tidak dapat digunakan untuk mewakili karakter yang lain. SBCDIC banyak digunakan pada komputer generasi kedua. SBCDIC menggunakan kombinasi 6-bit, sehingga lebih banyak kombinasi yang dihasilkan yaitu sebanyak 64 (2 6 = 64) kombinasi kode adalah 10 kode untuk digit angka, 26 kode untuk huruf alphabetic dan sisanya karakter-karaker khusus yang dipilih. Posisi bit di SBCDIC dibagi menjadi 2 zone yaitu 2 bit pertama (diberi nama A dan B) disebut alpha bit position dan 4 bit berikutnya (diberi nama bit 8, bit 4 dan bit 1) disebut numeric bit position.

25 Kode yang mewakili data Gambar 6.1 Arti posisi di SBCDIC AB842 Alpha bit position 1 Numeric bit position 0 0 = numeric = huruf A – I 1 0 = huruf J – R 0 1 = huruf S - Z

26 Kode yang mewakili data Tabel 6.3 Bilangan SBCDIC ABCDEFGHI ABCDEFGHI JKLMNOPQRSTUVWXYZJKLMNOPQRSTUVWXYZ

27 Kode yang mewakili data c) EBCDIC (Extended Binary Coded Decimal Interchange Code) atau ASCII (American Standard Code for Information Interchange) EBCDIC banyak digunakan pada computer generasi ketiga, seperti IBM S/360. EBCDIC terdiri dari kombinasi 8-bit yang memungkinkan untuk mewakili karakter sebanyak 256 (2 8 = 256) kombinasi karakter. Pada EBCDIC high-order bits atau 4-bit pertama disebut dengan zone bits dan low-order bits atau 4 bit kedua disebut dengan numeric bits Zone bitsNumeric bits High-order bits Low-order bits

28 Kode yang mewakili data Karakter yang diwakili oleh EBCDIC ditunjukkan oleh kombinasi digit biner 1 dan 0 pada zone bits dan numeric bits sebagai berikut: Zone bits 8 Numeric bit 0 0 = A - I 1 1 = J - R 1 0 = S - Z 0 1 = numeric = tidak ada karakter yang diwakili 1 1 = huruf capital (upper case) alphabetic dan numeric 1 0 = huruf kecil (lower case) alphabetik 0 1 = karakter khusus

29 Kode yang mewakili data d) ASCII 7-bit ASCII singkatan dari American Standard Code for Information Interchange atau ada yang menyebut dengan American Standard Commintee on Information Interchange dikembangkan oleh ANSI (American National Standards Institute) untuk tujuan membuat kode biner yang standar. Kode ASCII yang standar menggunakan kombinasi 7-bit, dengan kombinasi sebanyak 127 dari 128 (2 7 = 128) kemungkinan kombinasi, yaitu: - 26 buah huruf capital (upper case) dari A s/d Z - 26 buah huruf kecil (lower case) dari a s/d z - digit decimal dari 0 s/d karakter kontrol yang tidak dapat dicetak hanya digunakan untuk informasi status operasi computer - 32 karakter khusus (special characters) - ASCII 7-bit banyak digunakan untuk komputer-komputer generasi sekarang, termasuk komputer mikro e) ASCII 8-bit ASCII 8-bit terdiri dari kombinasi 8-bit mulai banyak digunakan, karena lebih banyak memberikan kombinasi karakter. Dengan ASCII 8-bit, karakter-karakter graphic yang tidak dapat diwakili ASCII 7-bit, seperti ♥ ♦ ♣ ♠ α β ►◄ karakter dan sebagainya dapat diwakili. Komputer IBM PC menggunakan ASCII 8-bit.

30 Terima Kasih


Download ppt "SISTEM BILANGAN & KODE Tri Wahyu Agusningtyas - 41812120039."

Presentasi serupa


Iklan oleh Google