Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Aplikasi Optimisasi Fungsi Pertemuan 19 Matakuliah: J0174/Matematika I Tahun: 2008.

Presentasi serupa


Presentasi berjudul: "Aplikasi Optimisasi Fungsi Pertemuan 19 Matakuliah: J0174/Matematika I Tahun: 2008."— Transcript presentasi:

1 Aplikasi Optimisasi Fungsi Pertemuan 19 Matakuliah: J0174/Matematika I Tahun: 2008

2 Bina Nusantara Biaya Minimum, Penerimaan Maksimum, dan Laba Maksimum Biaya minimum, Penerimaan Maksimum dan Keuntungan maksimum sebuah perusahaan dapat dihitung dengan pendekatan matematik melalui hitung kalkulus. Biaya minimum, Penerimaan maksimum dan Keuntungan maksimum merupakan sebuah keadaan stasioner atau titik kritis. Nilai kritis didapat apabila persamaan turunan pertama dari fungsi biaya, fungsi penerimaan dan fungsi keuntungan sama dengan nol.

3 Bina Nusantara Biaya Minimum Fungsi Biaya yang sering dicari titik minimumnya adalah fungsi Biaya total, fungsi Biaya marginal dan fungsi Biaya rata-rata marginal

4 Bina Nusantara Biaya Total Fungsi Biaya Total : TC = f(Q) Maka TC minimum bila d TC / d Q = 0

5 Bina Nusantara Marginal cost MC = dTC/dQ MC minimum bila dMC/dQ = 0

6 Bina Nusantara Biaya Rata-rata Minimum Biaya Rata-rata AC AC = TC/Q AC minimum bila dAC/dQ = 0

7 Bina Nusantara Optimisasi (1) Maksimisasi Keuntungan Dalam masalah optimisasi ada fungsi obyektif yang harus dibuat. Misal perusahaan ingin mendapat keuntungan maksimum yaitu maksimalisasi perbedaan antara penerimaan dengan biaya. R dan C masing-masing merupakan fungsi dari variabel yang sama yaitu Q. Laba (  ) = R - C, karena R = f(Q) dan C = f(Q) maka  = f (Q). Optimum dicapai apabila turunan pertama sama dengan nol.  = R - C maka d  /dQ  = dR/dQ - dC/dQ = MR - MC Optimum d  /dQ  = 0 maka MR - MC = 0 jadi MR = MC

8 Bina Nusantara Dari suatu perusahaan diketahui bahwa fungsi permintaan P = Q dan fungsi biaya C = Q Q Q Hitung kuantitas yang memberikan keuntungan maksimum. ( P dan C dalam Rupiah dan Q dalam Unit) Jawab R = P. Q = ( Q)Q = 1000Q - 2 Q 2 dari R diturunkan fungsi MR = R’ = Q. Sedangkan fungsi biaya C = Q Q Q dari fungsi biaya diturunkan fungsi biaya marjinal. MC = C’ = 3 Q Q Laba  optimum apabila MR = MC Q = 3 Q Q Q Q = 0 Q Q = 0 Optimisasi (2)

9 Bina Nusantara (Q - 35) (Q - 3) = 0 Q1 = 35 Q2 = 3 Untuk Q = 35 jika disubstitusikan pada fungsi laba  1000Q - 2 Q 2 - (Q Q Q ) maka  - Q Q Q =- (35) (35) (35) = sedangkan jika Q = 3 maka  (3) (3) (3) = Perusahaan mendapatkan laba maksimum apabila produk diproduksi 35 unit dengan keuntungan sebanyak Rp Optimisasi (3)


Download ppt "Aplikasi Optimisasi Fungsi Pertemuan 19 Matakuliah: J0174/Matematika I Tahun: 2008."

Presentasi serupa


Iklan oleh Google