Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Kelompok 2. The team Faddy Ardian (30397) Juniarti A.D Achmad Hadiannur (28979) Defri Is Suryanto Nandan Suteresna(30962) Nurul Oktarina Ning Puji Lestari.

Presentasi serupa


Presentasi berjudul: "Kelompok 2. The team Faddy Ardian (30397) Juniarti A.D Achmad Hadiannur (28979) Defri Is Suryanto Nandan Suteresna(30962) Nurul Oktarina Ning Puji Lestari."— Transcript presentasi:

1 Kelompok 2

2 The team Faddy Ardian (30397) Juniarti A.D Achmad Hadiannur (28979) Defri Is Suryanto Nandan Suteresna(30962) Nurul Oktarina Ning Puji Lestari Andi Setyawan Dedi Novriadi Iman Pirman Kholis Dirana Galih Angga Pribadi Ganda Perkasa (32065) Harmi Fatmawati Frans AGP

3 Digunakan dan dibersihkan??? USED CLEANED wHILEwHILE ?

4 Combustion technology Pulverized Coal-fired Power Generation Technology (Ultra Super Critical Steam Condition) Circulating Fluidized-bed Combustion Technology (CFBC) Internal Circulating Fluidized-bed Combustion Technology (ICFBC) Pressurized Internal Circulating Fluidized-bed Combustion Technology (PICFBC) Coal Partial Combustor Technology (CPC) Pressurized Fluidized-bed Combustion Technology (PFBC)

5 Supercritical coal-fired power plant by Harmi Fatmawati dan Nurul Oktarina This advanced technology for power generation is for achieving higher efficiency, clean and safe overall environment. Coal continues to be a major energy source for power producers worldwide. However, as carbon consciousness becomes more prominent, technologies for gaining efficiency and reducing emissions from coal-fired plants become more important. That is one reason why supercritical and ultra- supercritical boiler technologies are reemerging as new materials and designs help drive higher efficiency levels and ease of operation.

6 Supercritical coal-fired power plant Energy, in general, and electricity in particular, plays a vital role in improving the standard of life everywhere. World has abundant proven reserves of coal and thus coal- based thermal power plants dominate almost everywhere. The development of coal fired supercritical power plant technology can be described as an evolutionary advancement towards greater power output per unit and higher efficiency. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature.

7 As name suggests, coal-fired supercritical power plants operate at very high temperature and pressure (580 degree centigrade temp. with a pressure of 23 MPa) resulting much higher heat efficiencies (46%), as compare to sub-critical coal- fired plants which operates at 455 degree centigrade temp., and efficiency of within 40%. Some of the benefits of advanced supercritical power plants include: (a) Reduced fuel costs due to improved plant efficiency; (b) Significant improvement of environment by reduction in CO2 emissions; (c) Plant costs comparable with sub-critical technology and less than other clean coal technologies; (d) Much reduced NOx, SOx and particulate emissions; (e) Can be fully integrated with appropriate CO2 capture technology.

8 Because of its abundance and affordability, coal continues to be a major energy source for power producers worldwide. However, as carbon consciousness becomes more prominent, technologies for gaining efficiency and reducing emissions from coal- fired plants become more important. That is one reason why supercritical and ultra- supercritical boiler technologies are reemerging as new materials and designs help drive higher efficiency levels and ease of operation. Today’s supercritical units can achieve thermal efficiency of more than 45 percent, compared with a typical sub-critical plant’s percent.

9 Teknologi CFBC by Nandan Suteresna dan Defri Is Suryanto

10 Prinsip CFBC Emisi SOx dan Nox dapat direduksi dengan signifikan tanpa modifikasi khusus pada lingkungan. Dalam CFBC, desulfurisasi terjadi dalam furnace dengan menggunakan limestone sebagai material fluidisasi. Operasi CFBC terjadi dalam 2 tahap yaitu : reduksi pembakaran pada bagian fluidized- bed dan oksidasi pembakaran pada bagian freebroad.

11 Prinsip CFBC (Lanjutan) Karbon yang tidak terbakar dikumpulkan dalam cyclone temperatur tinggi untuk dilakukan recycle ke boiler sehingga meningkatkan efisiensi denitrasi. Untuk meningkatkan efisiensi thermal dipasang sebuah pre-heater untuk fluidisasi dan pembakaran udara dan sebuah boiler.

12 Kelebihan CFBC Kompatibel dengan berbagai macam bahan bakar. Polusi rendah. Efisiensi pembakaran tinggi. Mudah perawatan dan tidak memakan tempat banyak.

13 Internal Circulating Fluidized- bed Combustion Technology (ICFBC) Pengembangan dari CFBC dimana ruang pembakaran utama (primary combustion chamber) dan ruang pengambilan panas (heat recovery chamber) dipisahkan oleh dinding penghalang yang terpasang miring.

14 Di bagian bawah ruang pembakaran utama terpasang windbox untuk mengalirkan angin ke boiler, dimana angin bervolume kecil dialirkan melalui bagian tengah untuk menciptakan lapisan bergerak (moving bed) yang lemah, dan angin bervolume besar dialirkan melewati kedua sisi windbox tersebut untuk menimbulkan lapisan bergerak yang kuat. Dengan demikian maka pada bagian tengah ruang pembakaran utama akan terbentuk lapisan bergerak yang turun secara perlahan, sedangkan pada kedua sisi ruang tersebut, media FBC akan terangkat kuat ke atas menuju ke bagian tengah ruang pembakaran utama dan kemudian turun perlahan – lahan, dan kemudian terangkat lagi oleh angin bervolume besar dari windbox. Proses ini akan menciptakan aliran berbentuk spiral (spiral flow) yang terjadi secara kontinyu pada ruang pembakaran utama. Mekanisme aliran spiral dari media FBC ini dapat menjaga suhu lapisan mengambang supaya seragam. Selain itu, karena aliran tersebut bergerak dengan sangat dinamis, maka pembuangan material yang tidak terbakar juga lebih mudah. ketika media FBC yang terangkat kuat tersebut sampai di bagian atas dinding penghalang, sebagian akan berbalik menuju ke ruang pengambilan panas. Karena pada ruang pengambilan panas tersebut juga dialirkan angin dari bagian bawah, maka pada ruang tersebut akan terbentuk lapisan bergerak yang turun perlahan juga. Akibatnya, media FBC akan mengalir dari ruang pembakaran utama menuju ke ruang pengambilan panas kemudian kembali lagi ke ruang pembakaran utama, membentuk aliran sirkulasi (circulating flow) di antara kedua ruang tersebut. Menggunakan pipa pemanas yang terpasang pada ruang pengambilan panas, panas dari ruang pembakaran utama diambil melalui mekanisme aliran sirkulasi tadi.

15 Karakteristik ICFBC Suhu seragam dilapisan mengambang. Cocok untuk berbagai bahan bakar termasuk yang tidak mudah terbakar. Suhu dilapisan yang mengambang bisa diatur dengan menggunakan ruang pengambilan panas (heat recovery chamber)

16 Kelebihan: Cocok untuk berbagai jenis bahan bakar Suhu dapat dikontrol Tingkat polusi rendah Space-saving, ease of maintenance

17 PICFBC Flowchart of PICFBC model test plant

18 PICFBC PICFBC adalah Pressurized Internal Circulating Fluidized Bed Combustion Technology Pada dasarnya hampir sama dengan teknologi ICFBC hanya saja lebih menekankan pada Pressurized Vessel

19 Schematic of drawing PICFBC

20 Coal Partial Combustion (CPC) by Faddy Ardian slag- top boiler konvensional memiliki kekurangan menghasilkan banyak emisi Nox dan abu CPC menggunakan udara yang diinjeksikan menghasilkan gas sisa pembakaran yang lalu dibakar kembali sehingga tidak ada sisa pembakaran. dikembangkan oleh Japan Coal Energy Center, Kawasaki Heavy Industries, Ltd., JFE Steel Corp., Chubu Electric Power Co.Inc.,and J-POWER

21 Pilot plant

22 Pressurized Fluidized-bed Combustion Technology (PFBC)

23 Results of PFBC technology development: 1.Increase efficiency through combined power generation utilizing pressurized fluidized-bed combustion with a gross efficiency of 43%. 2.Space-savings through a compact pressurized boiler and the elimination of the desulfurization unit. 3.SOx level of approximately 5 ppm through in- bed desulfurization; NOx level of approximately 100 ppm through low-temperature of combustion (approximately 860 o C), and dust of less than 1 3mg/Nm by CTF (ceramic tube filter).

24 THANKS,,,,


Download ppt "Kelompok 2. The team Faddy Ardian (30397) Juniarti A.D Achmad Hadiannur (28979) Defri Is Suryanto Nandan Suteresna(30962) Nurul Oktarina Ning Puji Lestari."

Presentasi serupa


Iklan oleh Google