Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PENGANTAR TEORI PELUANG Minggu ke-3. Percobaan “acak” Percobaan acak : Hasil percobaan berupa nilai yang tidak pasti  Mempelajari jangka waktu antar.

Presentasi serupa


Presentasi berjudul: "PENGANTAR TEORI PELUANG Minggu ke-3. Percobaan “acak” Percobaan acak : Hasil percobaan berupa nilai yang tidak pasti  Mempelajari jangka waktu antar."— Transcript presentasi:

1 PENGANTAR TEORI PELUANG Minggu ke-3

2 Percobaan “acak” Percobaan acak : Hasil percobaan berupa nilai yang tidak pasti  Mempelajari jangka waktu antar kedatangan pelanggan  Menghitung banyaknya mobil yang lewat pada jangka waktu tertentu Fenomena acak tersebut seringkali mengikuti pola tententu  Jangka waktu antar kedatangan pelanggan: Semakin pendek jarak, semakin besar kemungkinannya. Atau dengan kata lain, memiliki peluang yang lebih tinggi dibanding dengan jarak yang lebih panjang

3 Percobaan “acak” Nilai pengamatan Dalam percobaan ada nilai variabel yang ingin diperoleh. Variabel tersebut biasanya memiliki kemungkinan nilai yang mungkin terjadi. Dalam pengamatan jangka waktu kedatangan pelangan: Waktu yang mungkin dari “nol” sampai “takhingga”. Dalam pengamatan menghitung banyaknya mobil yang lewat : dari “nol” sampai “takhingga”. Semua nilai yang mungkin dihasilkan dalam percobaan tersebut dinamakan sebagai Ruang Contoh

4 RUANG CONTOH DAN KEJADIAN Kejadian: Himpunan bagian dari ruang contoh Kejadian sederhana : hanya terdiri sari satu titik contoh Kejadian majemuk: terdiri sari lebih dari satu titik contoh Dalam mengamati kemungkinan hari hujan, ternyata : 1. dalam dua hari berturut-turut hujan A={HH}  kejadian sederhana 2. dalam dua hari tersebut hanya sekali hujan B={HT,TH}  kejadian majemuk

5 Menghitung Titik Contoh: Banyaknya titik contoh dari ruang contoh adalah n(S). Tentukan n(S) dari kemungkinan seseorang dapat dikelompokkan berdasar golongan darah (A,B,AB,O), rhesus (+,-), dan tekanan darah (rendah, normal, tinggi).  Ingat kembali hukum penggandaan, penjumlahan, permutasi, dan kombinasi S = { A+ rendah, …, O – tinggi} n(S)= 4 x 2 x 3 = 24 kemungkinan A = kejadian seseorang dengan golongan darah bukan A, rhesus +, dn golongan darah normal atau tinggi n(A)= 3 x 1 x 2 = 6 Menghitung Titik Contoh

6 Definisi Peluang  Pendekatan klasik terhadap penentuan nilai peluang diberikan dengan menggunakan nilai frekuensi relatif.  Andaikan dilakukan percobaan sebanyak N kali, dan kejadian A terjadi sebanyak n  N kali maka peluang A didefinisikan sebagai P(A) = n/N

7 Hukum Bilangan Besar  P(A)  m/n Jika suatu proses atau percobaan diulang sampai beberapa kali (DALAM JUMLAH BESAR = n), dan jika karakteristik A muncul m kali maka frekuensi relatif, m/n, dari A akan mendekati peluang dari A

8 Peluang Subyektif  Berapa peluang hidup di mars?  Berapa peluang dapat bertahan hidup dalam kondisi dingin?

9 Aksioma Peluang

10 Peluang suatu kejadian A: Jumlah peluang semua titik contoh dalam kejadian A. S={HH,HT,TH,TT} Misalkan P({HH})= P({HH})= P({HH})= P({HH})=w Maka jika P(S)=1=4w  w=1/4 Peluang A={HT,TH}=P({HT})+P({TH})=w+w=2w =1/2 Jadi P(A)=n(A)/n(S)=n/N=2/4=1/2 Percoban melempar mata uang satu kali S={M,B} P(S)=P({M})+P({B})=1 Misalkan P({M})=w, maka P({B})=1-w Berapa nilai w? Lakukan percobaan sebanyak n kali. Misalkan banyaknya sisi muka yang muncul adalah m. Maka P({M}) =m/n, yaitu merupakan frekuansi relatif dari munculnya kejadian sisi muka. Jika setimbang mka P({M})=1/2 Minggu 3: Peluang Suatu Kejadian

11 Sifat Peluang Kejadian saling terpisah/saling lepas: P(AUB)=P(A)+P(B) Kejadian saling bebas Dari 5000 mahasiswa, terdapat 2400 lulus matematika, 2800 lulus bahasa Inggris. Jumlah yang lulus kedua pelajaran tersebut sebesar 1200 Berapa peluang mahasiswa lulus sekurang-kurangnya satu pelajaran? Berapa peluang mendapatkan jumlah 7 atau 11 bila sepasang dadu dilemparkan? Berapa peluang munculnya sisi muka dan angka genap jika sekeping mata uang dan sebuah dadu sisi enam dilempar?

12 Peluang Bersyarat

13 Kadiah Bayes

14 Kaidah Bayes Di suatu daerah, dari pengalaman lalu diketahui bahwa peluang seseorang berumur 40 tahun teserang kanker adalah Jika peluang dokter mendiagnosis penderita kanker secara benar sebagai penderita adalah 0.78, dan peluang mendiagnosis bukan penderita kanker secara salah sebagai penderita kanker adalah 0.06, hitunglah peluang bahwa hasil diagnosis bagi sseorang mengatakan bahwa ia menderita kanker. P(K)=0.02 P(Y|K)=0.78 P(Y|S)=0.06 P(Y)? P(Y)=P(KdanY)+P(SdanY) =P(K)P(Y|K)+P(S)P(Y|S) =0.02* *0.06 = =0.0744

15 Contoh (5): Dalam sebuah kotak berisi 2 bola merah dan 3 bola biru. Jika diambil dua buah bola tanpa pemulihan. Berapakah peluang bola kedua berwarna merah (A) jika pada pengambilan pertama diketahui berwarna biru (B).

16 P(A|B)= P(A  B)/P(B) = (3/5)(2/4)/(3/5) = (3/5)(2/4)/(3/5) = 2/4 = 2/4 I II 3/5 2/4 MIsalkan : A= terambilnya bola merah pada pengambilan II B = terambilnya bola biru pada pengambilan I A B

17 Pengambilan I 3/5 2/5 3/4 A 2/4 1/4 2/4 A

18  Untuk mengerjakan kasus diatas, dapat juga dilakukan sebagai berikut:  MIsalkan B = terambilnya bola biru pada pengambilan I  A= terambilnya bola merah pada pengambilan II Pertama PertamaKedua Merah (B - ) Biru (B) Total Merah(A) 2/5 * 1/4 3/5 * 2/4 8/20 Biru (A - ) 2/5 * 3/4 3/5 * 2/4 12/20 Total8/2012/2020/20 P(A  B) = P(A).P(B) Perhatikan tabel kemungkinan P(A|B)=(6/20)/(12/20)=1/2

19 Kadiah Bayes

20 Kaidah Bayes Di suatu daerah, dari pengalaman lalu diketahui bahwa peluang seseorang berumur 40 tahun teserang kanker adalah Jika peluang dokter mendiagnosis penderita kanker secara benar sebagai penderita adalah 0.78, dan peluang mendiagnosis bukan penderita kanker secara salah sebagai penderita kanker adalah 0.06, hitunglah peluang bahwa hasil diagnosis bagi sseorang mengatakan bahwa ia menderita kanker. P(K)=0.02 P(Y|K)=0.78 P(Y|S)=0.06 P(Y)? P(Y)=P(KdanY)+P(SdanY) =P(K)P(Y|K)+P(S)P(Y|S) =0.02* *0.06 = =0.0744

21 Kota Bogor disebut kota hujan karena peluang terjadinya hujan (H) cukup besar yaitu sebesar 0.6. Hal ini menyebabkan para mahasiswa harus siap-siap dengan membawa payung (P). Peluang seorang mahasiswa membawa payung jika hari hujan 0.8, sedangkan jika tidak hujan 0.4. Berapa peluang hari akan hujan jika diketahui mahasiswa membawa payung? Hujan atau tidak hujan harus siap- siap bawa payung nih, soalnya ga bisa diprediksi

22 Misalkan : H = Bogor hujan, P = mahasiswa membawa payung P(H) = 0.6 P(TH) = 1-0.6=0.4 P(P|H) = 0.8 P(P|TH) = 0.4 Ditanya : P(H|P) Jawab : Teorema Bayes Sesuai hukum perkalian peluang

23 PR Tiga kantung berisi kelereng sebagai berikut: Kantung 1: 3 Merah, 7 Putih Kantung 2: 5 Merah, 5 Putih Kantung 3: 6 Merah, 4 Putih Sebuah kelereng diambil secara acak dari kantung 1. Jika kelereng ini merah, sebuah kelereng diambil dari kantung 2; jika kelereng ini putih, sebuah kelereng diambil dari kantung 3. (a) Berapa peluang terambilnya kelereng merah pada ambilan yang ke dua? (b) Misalkan dari ambilan kedua diperoleh kelereng merah. Berapa peluang(bersyarat) bahwa kelereng pertama yang terambil juga merah?


Download ppt "PENGANTAR TEORI PELUANG Minggu ke-3. Percobaan “acak” Percobaan acak : Hasil percobaan berupa nilai yang tidak pasti  Mempelajari jangka waktu antar."

Presentasi serupa


Iklan oleh Google