FEB Univ. 17 Agustus 1945 Jakarta

Slides:



Advertisements
Presentasi serupa
KONSEP DASAR STRUCTURAL EQUATION MODEL (SEM)
Advertisements

BOOTSTRAPPING BY LISREL 8.8 TO SPSS 18.
SEM (STRUCTURAL EQUATION MODELING) MAGISTER TEKNIK INDUSTRI
(Sumber: Dr Solimun, MS, 2003 )
Report Pertemuan 4-7 TIB13 – Pemrograman Java 2 – 7.
Structural Equation Modelling – Partial Least Square
Covariance SEM VS Component SEM
UJI VALIDITAS DAN UJI RELIABILITAS
Contoh Analisa Cepat smartPLS by adiwjj-STIKIM 2013
PARTIAL LEAST SQUARE P L S.
A S R I A N I STB. B1B PROGRAM STUDI MANAJEMEN
Jonathan Sarwono Htttp://
FEB Univ. 17 Agustus 1945 Jakarta
Pengantar SEM Fauziyah, SE., M.Si.
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
Pelatihan Metode Penelitian Partial Least Square (PLS)
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
Validitas dan reliabilitas
Uji Validitas & Uji Reliabilitas
UJI VALIDITAS DAN UJI RELIABILITAS
Validitas dan Reliabilitas Skala Psikologi
Uji VALIDITAS DAN RELIABILITAS Dosen: EVELLIN D. LUSIANA, S.Si, M.Si
ANALISIS JALUR MODUL 12 Analisis Jalur.
MENGHITUNG NILAI SKOR IRMALA DEWI.Y RUDY HARTONO
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
Fakultas Ekonomi dan Bisnis Jakarta, 15 Januari 2016
KORELASI & REGRESI.
based on Erny’s research (Postgraduate Student - S2 IKM STIKIM 2012)
HUBUNGAN-HUBUNGAN DALAM PENELITIAN
Microsoft Excel By : D e w i.
FEB Univ. 17 Agustus 1945 Jakarta
FEB Univ. 17 Agustus 1945 Jakarta
MODEL PERSAMAAN STRUKTURAL Program Studi Statistika
Nama Kelompok : Mufidatul Jariyah ( ) Lela Andriyani ( )
RELIABILITAS DAN VALIDITAS
KORELASI BERGANDA UJI KELAYAKAN INSTRUMEN
FEB Univ. 17 Agustus 1945 Jakarta
Analisis REGRESI.
Persamaan Regresi vs Model Struktural
UJI INSTRUMEN Yustina Chrismardani.
82. Klik NEXT. 81. Maka akan muncul kotak REPORT WIZARD seperti pada gambar, lalu klik taanda double lebih besar ))
41. Klik DATABASE TOOLS, lalu Klik RELATIONSHIPS
Metode Kuantitatif Untuk Manajemen
VALIDITAS DAN REABILITAS REGRESI BERGANDA Nori Sahrun, S.Kom., M.Kom
REGRESI BERGANDA dan PENGEMBANGAN Nori Sahrun., S.Kom., M.Kom
UJI VALIDITAS-RELIABILITAS
VALIDITAS DAN RELIABILITAS INSTRUMEN (SPSS)
Pengantar Aplikasi Komputer II Analisis Regresi Linier Berganda
Probabilitas dan Statistika
ANALISIS JALUR (PATH ANALYSIS)
Pengantar Aplikasi Komputer II Analisis Regresi Linier Sederhana
Pengenalan SPSS.
Misalkan kuesioner adalah sasaran tembak seperti pada gambar berikut ini. Anggap bahwa pusat sasaran tembak itu adalah target dari apa yang kita ukur.
Eviews PraktiK Regresi Ekonometrika / Al Muizzuddin F 2014.
ANALISIS REGRESI LINIER
ANALISIS JALUR ( PATH ANALYSIS ).
Komputer Terapan Administrasi Publik
UJI VALIDITAS DAN RELIABILITAS
Regresi Linier dan Korelasi
Structural Equation Modeling
Tahapan Belajar Rumus yang Sistematis (Didasarkan frekuensi penggunaan dalam riset skripsi / tesis / disertasi)
Metode Kuantitatif untuk Penelitian Sosial
Tim Dosen FEB UTA'45 Jkt Pelatihan SEM dengan AMOS 1.
Transcript presentasi:

FEB Univ. 17 Agustus 1945 Jakarta SEM dengan Smart PLS WORKSHOP METODE PENELITIAN KUANTITATIF Metode “Structural Equation Modeling” dan Interpretasi Hasil Penelitian Dengan Menggunakan Program Smart PLS (Partial Least Square) Intervening Variabel Instruktur: Sihar Tambun, SE, M.Si, Ak. Email: sihar.tambun@yahoo.com Email: sihar.tambun@uta45jakarta.ac.id UTA’45 JAKARTA Jumat, 20 Juni 2014 Software download Gratis: www.smartpls.de SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt Tim Dosen FEB

Introduction of PLS Jika antar variabel independen terjadi korelasi (ada multikolinieritas), maka analisis regresi tidak layak dipakai, sehingga PLS diciptakan untuk solusi ini. PLS mengakomodasi data besar (banyak) dan data kecil (sedikit) PLS Tidak banyak asumsi PLS bisa untuk konfirmasi dan prediksi PLS bisa menggunakan indikator reflesif dan formatif PLS menguji estimasi dan signifikansi dengan model Resampling (Bootstrap) Tujuan Estimasi PLS adalah membuat komponen skor / bobot terbaik dari variabel laten endogen, untuk memprediksi hubungan variabel laten dengan indikatornya. Inner Model: Hubungan antar sesama variabel Laten. Outer Model: Hubungan antara indikator dengan variabel latennya. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

PRAKTEK SEM – PLS MODEL INTERVENING VARIABEL SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah Langkah PLS untuk Intervening Memperoleh data data penelitian berdasarkan indikator pengukuran variabel. Data diinput di Ms. Excel dan kemudian di Save – As dalam format CSV (Comma Delimited). Aktifikan Program Smart PLS dengan menggunakan data penelitian yang telah di Save – As dalam format CSV (Comma Delimited). Menggambar model penelitian sesuai dengan tujuan penelitian yang didukung oleh grand theory, riset pendahuluan dan hipotesis yang ingin diuji. Mengolah data estimate, untuk mengetahui Hasil Outer Model Mengolah data Resampling Bootstrapping, untuk mendapatkan model terbaik. Membaca goodness of fit dari model Hasil pengujian hipotesis. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 1: Input data di Excel, kemudian save as ke dalam format CSV (Comma Delimited). Format ini yang akan dibaca program PLS. Untuk CSV adalah singkatan Comma – Separated – Value. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 2: Bukan program Smart PLS, maka akan tampak tampilan seperti dibawah ini. Klik File, New, Create New Project. Ikut langkah langkah tersebut seperti dibawah ini. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Beri nama project name “Latihan1”, kemudian klik Next, maka akan muncul tampilan seperti dibawah (Kanan) ini. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Cari data penelitian di laptop anda, yang akan diolah dengan software ini. Gunakan tombol yang berada disebelah kotak file name. File yang dipilih hari file CSV. Klik finish bila sudah dipilih. Akan tampak nama project nya, yaitu Latihan 1. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 3: Menggambar Model Penelitian Langkah 3: Menggambar Model Penelitian. Untuk menggambar model penelitian, harus dimunculkan dulu data indikator penelitian. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Gambar Model Penelitian ini Gambar Model Penelitian ini. Judul Penelitian ini adalah: “Pengaruh Kualitas Dosen dan Kualitas SAP Terhadap Prestasi Belajar Mahasiswa, dengan Kualitas Proses Belajar Mengajar sebagai variabel Intervening.” SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 4: Meng-calculate data penelitian untuk menguji “Outer Model” Langkah 4: Meng-calculate data penelitian untuk menguji “Outer Model”. Ikuti petunjuk dibawah ini. Outer model digunakan untuk uji validitas. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Hasil Outer loadings (measurement model) atau validitas konvergen digunakan untuk menguji unidimensionalitas dari masing-masing konstruk. Menurut Chin (1998), nilai indikator loading factor yang lebih besar atau sama dengan 0,5 dapat dikatakan valid. Contoh Variabel KDA, Nilai Outer Loadings = 0.776, 0.856, 0.877, 0.717. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 5: Mengolah data dengan Resampling Bootstrapping, untuk mendapatkan model terbaik. Klik Calculate, Bootsrapping. Selanjutkan ketik angka 74 (jumlah data) dan 250. Selanjutnya klik finish. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Hasil Bootstapping dalam bentuk gambar akan dihasilkan seperti dibawah ini. Tampilan dalam bentuk tabel dapat dilakukan dengan cara yang dijelaskan pada slide berikutnya. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Mengeluarkan report Bootstrapping, klik Report, Html (Print) Report Mengeluarkan report Bootstrapping, klik Report, Html (Print) Report. Report akan ditampilkan dalam halaman HTML seperti dibawah ini. Output ini nanti digunakan untuk menjawab hipotesis. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Untuk mendapatkan hasil goodness of fit, seperti :“composite reliability, cross loading, R Square, dan lain lain” dilakukan dengan cara seperti dibawah ini. Klik Calculate, PLS Algorithm, finish. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Mengeluarkan report goodness of fit, seperti :“composite reliability, cross loading, R Square, dan lain lain” dilakukan dengan cara seperti dibawah ini. Klik Report, Html (Print) Report. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 6: Membaca goodness of fit dari model Langkah 6: Membaca goodness of fit dari model. Pertama, uji validitas dengan “Outer Loadings” dapat dilihat pada langkah 4. Kedua, hasil “Cross Loadings” adalah sebagai berikut: Output dari Cross Loadings ini menghendaki bahwa nilai korelasi dari setiap indikator dengan variabel latennya, harus lebih besar , bila dibandingkan dengan korelasi antara indikator KDA1, KDA2, KDA3, KDA4, dengan Variabel Laten KPBM, PBMA, dan SAP SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Ketiga, melihat output “Composite Reliability” Ketiga, melihat output “Composite Reliability”. Keempat, menilai hasil dari “Cronbach Alpha”. Tujuan menilai konsistensi responden dalam menjawab pertanyaaan. Uji keandalan data dilakukan dengan composite reliability. Chin W (1998) mengatakan bahwa “The unidimensionality of the block of variables may be assessed by using composite reliability (should be > 0.7)”. Memperhatikan hasil Composite Reliability diatas, keseluruhan hasil uji berada diatas 0,70. Maka dengan demikian dapat disimpulkan bahwa data Kualitas Dosen Akuntansi (KDA), data Kualitas Sillabus (KS), data Kualitas Proses Belajar Mengajar (KPBM), dan Prestasi Belajar Mahasiswa Akuntansi (PBMA) adalah reliabel dan terandalkan dan dapat dipergunakan untuk uji hipotesis. Cronbach alpha adalah tingkat konsistensi jawaban responden dalam satu variabel laten. Umumnya untuk riset pada tingkat skripsi adalah > 0,60 dan untuk riset untuk tesis dan disertasi adalah > 0,70. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Langkah 7: Membaca Outer Weight , Path Coefficient (Pengujian Hipotesis), dan R Square. Outer Weight memperlihatkan bahwa tiap indikator signfikan terhadap variabel latennya, karena t statistiknya > 1,96.. Path Coefficient menunjukkan bahwa semua pengujian variabel antar variabel adalah signifikan. Dengan demikian dapat disimpulkan bahwa semua hipotesis dapat diterima. R Suare menujukkan kemampuan variabel variabel eksogen dalam menjelaskan variabel endogen. Kemampuan variabel KDA dan SAP dalam menjelaskan KPBM adalah 69,01%. Sedangkan kemampuan variabel KDA, SAP, dan KPBM terhadap PBMA adalah 11,67%. SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt

Sekian SEM dengan Smart PLS Tim Dosen FEB UTA'45 Jkt