DISTRIBUSI PELUANG KONTINU

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
PENGUJIAN HIPOTESIS.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

DISTRIBUSI PELUANG KONTINU Yulvi Zaika

MATERI DISTRIBUSI NORMAL DAN NORMAL STANDAR DISTRIBUSI CHI KUADRAT DISTRIBUSI T STUDENT DISTRIBUSI F FISHER DISTRIBUSI KOMULATIF TRANSFORMASI PADA NORMAL STANDAR

DITRSIBUSI NORMAL Distribusi normal, disebut pula distribusi Gauss, adalah distribusi probabilitas yang paling banyak digunakan dalam berbagai analisis statistika. Distribusi normal baku adalah distribusi normal yang memiliki rata-rata nol dan simpangan baku satu. Distribusi ini juga dijuluki kurva lonceng (bell curve) karena grafik fungsi densiti probabilitasnya mirip dengan bentuk lonceng. Distribusi normal memodelkan fenomena kuantitatif pada ilmu alam maupun ilmu sosial. Beragam skor pengujian psikologi dan fenomena fisika seperti jumlah foton dapat dihitung melalui pendekatan dengan mengikuti distribusi normal. Distribusi normal banyak digunakan dalam berbagai bidang statistika, misalnya distribusi sampling rata-rata akan mendekati normal, meski distribusi populasi yang diambil tidak berdistribusi normal. Distribusi normal juga banyak digunakan dalam berbagai distribusi dalam statistika, dan kebanyakan pengujian hipotesis mengasumsikan normalitas suatu data.

SIFAT DISTRIBUSI NORMAL Fungsi density berbentuk bel Notasi N(,2)  : rata - rata 2 : varian:  : standar deviasi X : nilai perubah acak COV:coefisien of varinace

Fungsi densitas probabilitas

Fungsi distribusi kumulatif

DISTRIBUSI NORMAL STANDAR Untuk kemudahan perhitungan karena setiap masalah akan memiliki rata-rata dan standar deviasi yang berbeda maka dibuat distribusi normal standar. Notasi N(,2)= N(0,1) Bagaimana merubah rata rata dan standar deviasi ?

Z=0.12

KOMULATIF NORMAL STANDAR 𝑍= 𝑋−𝜇 𝜎 = 6.2−5 10 =0.12 P(X=6.2)= 0.5478-0.5=0.0478 0.12

KOMULATIF NORMAL STANDAR P(3.8<X<5) 𝑍= 𝑋−𝜇 𝜎 = 3.8−5 10 =−0.12 𝑍= 5−5 10 =0 P(3.8<X<5)= p(X=5)-p(X=3.8) = 0.5 – 0.4522 = 0.0478 -0.12

KOMULATIF NORMAL STANDAR P(X>3.8) 𝑍= 𝑋−𝜇 𝜎 = 3.8−5 10 =−0.12 P(X>3.8)= 1-p(X=3.8) = 1– 0.4522 = 0.5472 -0.12

Contoh soal Rata rata curah hujan adalah 30 cm dengan standar deviasi 20 cm. Tentukanlah probabilitas curah hujan: 20 cm Kurang dari 40 Antara 45 dan 50 cm Besar dari 80 cm Pada curah hujan berapa bila probabilitas 35%

DISTRIBUSI CHI KUADRAT Dalam teori probabilitas dan statistika, distribusi khi-kuadrat (bahasa Inggris: Chi-square distribution) atau distribusi χ² dengan k derajat bebas adalah distribusi jumlah kuadrat k peubah acak normal baku yang saling bebas. Distribusi ini seringkali digunakan dalam statistika inferensial, seperti dalam uji hipotesis, atau dalam penyusunan selang kepercayaan

Notasi k = N1 — derajat kebebasan x = [0, +∞) Fungsi probabilitas Fungsi komulatif

Fungsi densitas probabilitas

Fungsi distribusi kumulatif

Jika dalam suatu percobaan atau eksperimen hanya memiliki dua hasil keluaran, seperti halnya pelemparan mata uang, kita mendapatkan sisi depan dan sisi belakang, maka distribusi normal dapat digunakan untuk menentukan apakah frekuensi kedua hasil tersebut cukup signifikan terhadap frekuensi yang diharapkan. Namun demikian, jika lebih dari dua hasil yang muncul, katakanlah ada k- hasil, makadistribusi normal tidak dapat digunakan untuk menguji perbedaan signifikan antara frekuensi hasil pengamatan dengan frekuensi yang diharapkan. Untuk melakukan uji hipothesis dengan menggunakan hasil percobaan yang memiliki lebih dari dua hasil, kita menggunakan Uji Chi-Kuadrat (Chi-Square Testing, dilambangkan dengan c2 ).

Jika kita mempunyai frekuensi observasi sebanyak k, yaitu o1, o2, o3, …., ok dan frekuensiharapan (expectation) yaitu e1, e2, e3 , …, ek, maka rumusan chi-kuadrat dituliskan: Jika 2 hitung< 2 tabel, maka ada kesesuaian sempurna antara hasil observasi dan nilai harapan.

Contoh soal Sebuah dadu dilempar 120 kali dan hasilnya disajikan pada tabel di bawah ( sisi angka 1 diperoleh 13 kali, sisi 2 diperoleh 28 kali, dan seterusnya). Jika dadu tersebut dipandang ideal, maka: (a) Tentukan nilai 2 (b) Apabila digunakan derajat signifikan 5% apakah hasil tersebut menunjukkan bahwa dadu itu tidak ideal?

derajat bebas yaitu 6 – 1 = 5 ( angka 6 berasal dari adanya 6 sisi dadu kemudian dikurangi 1) Dari tabel distribusi chikuadrat didapat nilai kritis 2 = 11,07. 18,70 > 11,07), hipothesis atau anggapan bahwa dadu tersebut ideal kita tolak karena ada beda cukup signifikan antara hasil observasi dengan nilai harapan.

DISTRIBUSI T STUDENT Karena jumlah sampel yang kecil sehingga (kurang dari 30 ) , sehingga nilai standar deviasi berfluktuasi relatif besar. Sehingga untuk sebaran distribusi sampel kecil digunakan t student x = nilai rata-rata sampel  = nilai rata-rata populasi S= standar deviasi sampel n = banyak sampel

sifat Mempunyai rata-rata sama dengan nol tetapi dengan standar deviasi yang berbeda beda sesuai dengan besarnya sampel . Semakin besar sampel maka semakin mendekati distribusi normal.

Probability density function

Cumulative distribution function

Contoh soal Selama kurun waktu 2003 diketahui harga saham perusahaan pertanian Rp. 354 per lembar. Untuk mengetahui kinerja perusahaan pertanian diadakan penyelidikan dengan sampel 4 perusahaan. Diperoleh rata-rata saham adalah Rp.272 perlembar dengan standar deviasi Rp.260. Dengan taraf signifikan 1% apakah harga saham tersebut mengalami penurunan

Perkiraan awal harga saham  354 Apakah turun ≤ 354 (uji satu arah) V= n-1 =3 diperoleh t=4.541 Dengan taraf signifikan 1% perusahaan mengalami penurunan yang nyata 4.541 Yang diterima Yang ditolak -0.63

Contoh 2 Kereta api eksekutif jurusan malang, surabaya dan yogya berjumlah 24 unit. Harga rata-rata tiket Rp.253.000,-.Karena persaingan dengan perusahaan penerbangan agar penumpang tidak turun drastis maka diberikan diskon. Harga tiket rata-rata setelah didiskon dari 16 jenis tiket adalah Rp.212.000,- dengan standar devisi Rp.46.000,-. Apakah penurunan tarif tersebut untuk tingkat signifikan 5% memberikan perbedaan yang nyata.

Solusi Harga awal Rp.253.000,-. Harga berubah  Rp.253.000,- Tanda  menandakan kondisi 2 arah v=n-1=16-1=15 dengan =5% diperoleh t tabel= 2.131 t hitung =3.57 -2.131 Yang diterima Yang ditolak Yang ditolak 2.131 Terdapat perbedaan yang signifikan

DISTRIBUSI F Dalam teori probabilitas dan statistika, distribusi F merupakan distribusi probabilitas kontinyu. Distribusi F juga dikenal dengan sebutan distribusi F Snedecor atau distribusi Fisher-Snedecor (setelah R.A. Fisher dan George W. Snedecor). Distribusi F seringkali digunakan dalam pengujian statistika, antara lain analisis varians dan analisis regresi. Distribusi dipakai untuk membandingkan dua varian yang berpopulasi normal

u= pembilang (numerator) v= penyebut (denominator)

FUNGSI DENSITAS

FUNGSI DISTRIBUSI KUMULATIF

TUGAS Data hujan lebat (distribusi poison) Suatu hasil percobaan kuat tekan beton diperoleh harga rata-rata dan stdr deviasi 60.14 dan 5.02 Nm/mm2. (a) tentukan probabilitas tes tersebut yang menghasilkan kuat tekan lebih dari 45 Nm/mm2. (b) probabilitas dimana kuat tekan antara 50.11 dan 70.19. (c) pada kuat tekan berapakah probailitas 10%. Data hujan lebat (distribusi poison) Jml hujan /thn Frekwensi pengamatan Frekwensi teoritis 20 19.94 1 23 23.87 2 15 14.29 3 8 7.9 Cek dg chi kuadrat Apakah distribusi Poisson cocok dg Derajat signifikan 5%

Suatu perusahaan menyatakan baterai yang digunakan untuk maian tahan rata-rata 30 jam. Setiap bulan 16 batrai diuji. Bila diperoleh nilai Distribusi t student -t0,025 dan t 0,025 maka perusahaan puas dengan pernyataan di atas. Kesimpulan apa yang seharusnya diambil perusahaan bila rata –rata uji 27.5 jam dengan simpangan 5 jam. Suatu perusahaan rokok mengatakan bahwa rata-rata kadar nikotin rokoknya 1.83 mg Apakah anda setuju dengan pengusaha rokok tersebut bila 8 sampel diamabil mengandung nikotin 2.0 ; 1.7; 2.1;1.9;2.2;2.1; 2.0; 1.6?