Prisma & Limas Kelompok 2: Amalia Permata I. (8 – 9/03)

Slides:



Advertisements
Presentasi serupa
Bangun Ruang Sederhana
Advertisements

Masih Ingatkah Kamu: 1. Proyeksi Garis pada Bidang?
BANGUN DATAR DAN BANGUN RUANG
Bangun Ruang Tiga Dimensi
BANGUN RUANG SISI DATAR
MARI BELAJAR Semoga: Berhasil Bermanfaat Dan enjoy MGMP SMANEGA.
Selamat datang di presentase bangun datar layang-layang
Bangun Datar Geometri Koryna Aviory, S.Si, M.Pd..
BANGUN RUANG SISI DATAR
GEOMETRI TIGA DIMENSI.
BANGUN RUANG SISI LENGKUNG
Rumus Matematika Dasar Bangun Ruang
GEOMETRI RUANG (DIMENSI 3)
GEOMETRI RUANG DIMENSI TIGA
LIMAS By zainul gufron s..
LUAS PERMUKAAN DAN VOLUME LIMAS
Luas Permukaan Bangun Ruang SISI DATAR
Pembelajaran Prisma.
BANGUN RUANG SISI DATAR. BANGUN RUANG SISI DATAR.
BANGUN RUANG SISI DATAR
Balok Yang akan kita pelajari: Unsur-unsur balok Luas permukaan balok
Apa yang dimaksud dengan KUBUS dan BALOK ? Kubus merupakan bangun ruang yang dibatasi oleh 6 buah bangun datar berbentuk segiempat dan kongruen. Balok.
STANDAR KOMPETENSI dan KOMPETENSI DASAR
Kubus.
JARING – JARING LIMAS SEGIENAM
disusun oleh : Christin DW, SMP BOP.2 yk
MENENTUKAN LUAS PERMUKAAN LIMAS Limas Limas adalah bangun ruang yang alasnya berbentuk segi banyak (segi tiga, segi epat, segi lima) dan bidang sisi.
Macam-Macam Bangun Ruang
LIMAS LIMAS LIMAS LIMAS BY: RIO ARIS NUGROHO.
PRISMA By zainul gufron s..
PRISMA Prisma adalah bangun ruang yang dibatasi oleh 2 bangun datar yang kongruen dan sejajar, serta bidang lain sebagai sisi tegaknya UNSUR-UNSUR PRISMA.
Kelompok 1 Anggota : -Jainal Permana Sidiq - Kristoforus Yoris Teguh rasetyo - Latifa Axyas - M Rifandy - M Dandy Chrisnandy - Rizky Febrian Arifin Materi.
PRISMA Pengertian Prisma adalah bangun ruang yang dibatasi oleh dua bidang berhadapan yang kongruen dan sejajar yang disebut alas dan tutup prisma, serta.
Untuk : MTs. Kelas VIII Smt.2
Putri Selisawati Wahyu I. ( )
PRISMA DAN LIMAS by : Dwi Khairani.
Segitiga dan Segiempat
GEOMETRI DAN PENGUKURAN
Menggambar Bangun Ruang
ASSALAMUALAIKUM WR.WR.
LIMAS Apa yang dimaksud dengan LIMAS ?
ASSALAMU’ALAIKUM WR WB
BANGUN RUANG SISI LENGKUNG
BAHAN AJAR MATEMATIKA MTs
ANGGOTA KELOMPOK : FEBRI KURNIAWAN M. FAJRIANSYAH SURIANTO
WORKSHOP MATEMATIKA BANGUN RUANG TABUNG
PERSEGI.
BELAJAR DENGAN CD INTERAKTIF SELAMAT BELAJAR DENGAN CD INTERAKTIF BANGUN RUANG SISI DATAR Loading...
GEOMETRI TIGA DIMENSI.
BANGUN RUANG “LIMAS”.
LUAS SEGITIGA MENU 1. Menemukan Rumus Luas Segitiga 2. Menghitung Luas
Selamat Datang Mulai.
SEGI EMPAT Gambar E. 1.
BANGUN RUANG SISI DATAR
LUAS KUBUS Oleh : C h r i s t i n e L. M, S. Pd.
Bangun bangun ruang yang sisi alas dan atas bentuknya sama
LUAS BANGUN RUANG Getrudis Jodor Gresia Dolhasair Hasrani
Definisi Limas Limas adalah bangun ruang yang dibatasi sebuah bangun datar sebagai alas dan bidang sisi-sisi tegak berupa segitiga yang bertemu pada satu.
SEGITIGA DAN SEGIEMPAT
Sifat-siafat Bangun Ruang Dan Hubungan Bangun Ruang
Diagonal Bidang, Digaonal Ruang, dan Bidang Diagonal
SUSY FEBRIYA DAN LINDA PURNAMASARI
Volume Bangun Ruang Bersisi Lurus
BANGUN RUANG 3D KONPETENSI INDIKATOR
By : Elisabeth Margareth Gultom. Prisma adalah bangun ruang yang memiliki alas dan atap yang sama bentuk dan ukurannya serta memiliki sisi tegak (sisi.
BANGUN RUANG SISI DATAR materi soal rangkuman Motivasi Memahami sifat-sifat kubus, balok, prisma, limas, dan bagian-bagiannya, serta menentukan ukurannya.
BANGUN RUANG “KUBUS” AULIA PUSPITA Dewi a
LUAS DAERAH SEGITIGA LANGKAH-LANGKAH : KESIMPULAN t a L = (a  t) ? ?
LUAS DAERAH SEGITIGA LANGKAH-LANGKAH : KESIMPULAN t a L = (a  t) ? ?
BAB 8 BANGUN RUANG SISI DATAR. KOMPETENSI DATAR 3.9 Membedakan dan menentukan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma,
Transcript presentasi:

Prisma & Limas Kelompok 2: Amalia Permata I. (8 – 9/03) Annisa Meliarosa F. (8 – 9/05) Karisma Noranisa (8 – 9/15) Maraya Aghnia S. (8 – 9/16)

Limas ri Prisma SOAL

Prisma adalah bangun ruang yang dibatasi oleh 2 buah bidang, berbentuk segi banyak yang sejajar dan sisi-sisi tegak yang berpotongan menurut rusuk-rusuk yang sejajar.

Bagian bagian Prisma Diagonal sisi Titik sudut Rusuk SISI Alas

Sifat-sifat prisma : Prisma memiliki bentuk alas dan atap yang kongruen. Pada gambar terlihat bahwa segitiga ABC dan DEF memiliki ukuran dan bentuk yang sama. Setiap sisi bagian samping prisma berbentuk persegipanjang. Prisma segitiga pada gambar dibatasi oleh tiga persegipanjang di setiap sisi sampingnya, yaitu ABED, BCFE, dan ACFD. Prisma memiliki rusuk tegak.

Cara Menghitung Unsur – Unsur Pada Prisma No. Prisma Segi Banyak Sisi Jumlah Rusuk Diagonal Sisi Diagonal Ruang Titik Sudut 1. 3 5 9 6 2. 4 12 8 3. 7 15 20 10 4. 18 30 5. n n+2 3n n(n-1) n(n-3) 2n

Luas Alas x Tinggi atau (2 x Luas Alas ) + (Keliling alas x Tinggi) (2 x Luas Alas ) + Luas Selimut atau (2 x Luas Alas ) + (Keliling alas x Tinggi) Luas Alas x Tinggi

Jaring-jaring Prisma BACK Prisma segitiga Prisma segilima Prisma segiempat/kubus BACK Tabung

Limas Limas adalah bangun ruang yang dibatasi oleh alas berbentuk segi –n yang kemudian dari sisi alas tersebut dibentuk sisi tegak berbentuk segitiga yang bertemu pada satu titik puncak.

Limas beraturan adalah limas yang alasnya berupa segi n beraturan dan proyeksi titik puncak pada alas berimpit dengan titik pusat alas. Contoh-contoh limas : Limas segitiga Limas segiempat Limas segilima dll

Cara Menghitung Unsur – Unsur Pada Limas Jumlah Diagonal Bidang No. Limas Segi Jumlah Titik Sudut Jumlah Bidang Jumlah Rusuk Jumlah Diagonal Bidang 1. 6 7 12 3 2. 5 10 2 3. 4 8 1 4. 5. n n + 1 2n n – 3

Rumus Luas Permukaan Rumus Volume Prisma Luas alas + jumlah luas sisi tegak sa 1/3 x Luas Alas x Tinggi

Jaring Jaring Limas BACK Limas Segi Empat Limas Segi Tiga Limas Segi Lima BACK

SOAL LIMAS!!! SOAL PRISMA!!!

SOAL PRISMA JAWABANNYAAAA????? 1. Sebuah prisma dengan alas berbentuk segitiga siku – siku dengan panjang sisinya 8 cm, 15 cm, dan 17 cm. Jika tinggi prisma tersebut adalah 20 cm. maka berapakah volumenya ? JAWABANNYAAAA?????

Luas Alas Segitiga siku siku Volume Prisma = Luas alas x Tinggi Luas Alas Segitiga siku siku alas x tinggi 8 x 15 = 60 𝑐𝑚 2 2 2 Volume = Luas alas segitiga x Tinggi = 60 𝑐𝑚 2 x 20 cm = 1200 𝒄𝒎 𝟑 BACK

SOAL LIMAS JAWABANNYA ADALAH…… 1. Sebuah limas dengan alas persegi mempunyai sisi alas 20 cm dan volume 3200 𝑐𝑚 3 . Berapakah tinggi limas? JAWABANNYA ADALAH……

Volume Limas = 1/3 x Luas alas x Tinggi 3200 = 1/3 x (20 x 20) x tinggi 3200 = 1/3 x 400 x tinggi 3200 x 3 x 1/400 = tinggi 8 x 3 = tinggi 24 = tinggi Jadi tinggi limas tersebut adalah 24 cm BACK