KELOMPOK 9: HASANATUL IFTITAH ( ) NONI ARYANTI ( )

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
DISTRIBUSI PELUANG KONTINU
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

PEMODELAN SIRPS UNTUK PENYAKIT INFLUENZA DENGAN VAKSINASI PADA POPULASI KONSTAN KELOMPOK 9: HASANATUL IFTITAH (1301423) NONI ARYANTI (1301399) ZARA ANISYA FAHMI (1301405)

MASALAH SEBAB AKIBAT ALAT PENYELESAIAN ALASAN LATAR BELAKANG

RUMUSAN MASALAH Bagaimana model matematika SIRPS pada penyakit influenza dengan vaksinasi pada populasi konstan? Bagaimana menentukan titik kesetimbangan dan analisis kestabilan penyebaran penyakit influenza dengan vaksinasi pada populasi konstan? Bagaimana simulasi model dan interpretasi perilaku model pada penyebaran penyakit influenza dengan vaksinasi menggunakan program Maple? Bagaimana menentukan proporsi vaksinasi minimum? 1 2 3 4

BATASAN MASALAH Pada makalah ini, permasalahan dibatasi dengan laju kelahiran yang terjadi pada populasi diasumsikan sama dengan laju kematian, artinya jumlah populasi yang dipakai konstan. Analisis kestabilan terhadap endemik dilakukan saat 𝑒=0 artinya diasumsikan masa wabah lebih pendek dari masa kehilangan kekebalan. Dan program software yang digunakan adalah Maple 17.

TUJUAN Menentukan model matematika SIRPS pada penyakit influenza dengan vaksinasi pada populasi konstan. Mengetahui titik kesetimbangan dan analisis kestabilan penyebaran penyakit influenza dengan vaksinasi pada populasi konstan. Mengetahui simulasi model dan interpretasi perilaku model pada penyebaran penyakit influenza dengan vaksinasi menggunakan program Maple 17. Mengetahui proporsi vaksinasi minimum penyakit influenza. 1 2 3 4

MANFAAT 1. Bagi Penulis. Penulis dapat mengetahui pemodelan matematika SIRPS penyakit influenza dengan vaksinasi pada populasi konstan. 2. Bagi pihak lain. Dengan adanya makalah ini diharapkan dapat memberikan sumbangsih kepada mahasiswa untuk melakukan penelitian selanjutnya.

LANDASAN TEORI Influenza Penularan dan Gejala Influenza Pemodelan Matematika Pendekatan pada Pemodelan Matematika Tahapan Pemodelan Persamaan Diferensial Persamaan Diferensial Linear dan Tak Linear Solusi Persamaan Diferensial Titik Kesetimbangan Nilai Eigen dan Vektor Eigen Kestabilan Titik Tetap Kriteria Routh-Hurwitz Mapel

FAKTA PENYAKIT INFLUENZA HASIL DAN PEMBAHASAN FAKTA PENYAKIT INFLUENZA Virus yang menyebabkan epidemi flu dapat dibedakan dalam tiga tipe berbeda yaitu tipe A, B, dan C. Vaksinasi memberikan konstribusi besar dalam penurunan jumlah pasien flu. Terjadi penurunan pasien flu pada orang dewasa setelah dilakukan vaksinasi. vaksinasi mempunyai potensi yang lebih tinggi dalam mengurangi jumlah penderita flu dibandingkan dengan penggunaan antibiotik.

vaksinasi direkomendasikan sebagai salah satu strategi untuk mencegah wabah influenza pada orang usia lanjut dalam jangka waktu yang panjang. vaksinasi pada orang usia produktif (< 65 tahun) dapat mengurangi tingkat penularan influenza (jumlah penderita flu). Pada orang tua, vaksinasi terhadap influenza dikaitkan dengan penurunan risiko rawat inap untuk penyakit jantung, penyakit serebrovaskular, dan pneumonia atau influenza serta resiko kematian dari semua penyebab selama musim influenza.

ASUMSI DALAM PENYEBARAN PENYAKIT INFLUENZA Individu yang terinfeksi penyakit Influenza dapat disembuhkan. Jumlah populasi diasumsikan cukup besar Setiap individu yang belum terserang penyakit masuk ke subpopulasi susceptibles (rentan terserang). Individu yang sudah sembuh dapat menjadi rentan kembali terserang virus yang baru. Tidak ada masa inkubasi apabila terjadi proses penularan. Penyakit menular melalui kontak langsung antara individu rentan dengan penderita. Individu yang rentan diberikan vaksinasi dengan ukuran vaksinasi tertentu sehingga dapat menyebabkan individu yang diberikan vaksin kebal terhadap penyakit. Penyaki tidak fatal ( tidak terjadi kematian karena infeksi).

ASUMSI TERHADAP VAKSIN Pemberian vaksin diasumsikan tidak terkendala oleh faktor biaya. Kekuatan vaksinasi 100%, berarti setiap individu yang mendapat vaksin akan kebal dari penyakit Influenza. Kekebalan yang terjadi karena vaksin bersifat permanen. Hal tersebut berarti individu yang mendapat vaksin tidak dapat terinfeksi oleh penyakit yang sama sampai waktu tertentu. Terdapat virus baru yang kebal terhadap vaksin

VARIABEL

PARAMETER

SKEMA MODEL

MODEL SIRPS

TITIK KESETIMBANGAN

ANGKA RASIO REPRODUKSI DASAR Teorema 3.1 Dipunyai 𝑅 0 = πœ‡π›½π‘ž πœ‡+𝑐 πœ‡+1βˆ’π‘ž Dari sistem persamaan (3.7). Berdasarkan nilai 𝑅 0 tersebut diperoleh: 1. Jika 𝑅 0 <1 maka sistem persamaan (3.7) hanya mempunyai 1 titik kesetimbangan yaitu titik kesetimbangan bebas penyakit. 2. Jika 𝑅 0 >1 maka sistem persamaan (3.7) mempunyai 2 titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan Endemik.

ANALISIS KESTABILAN

SIMULASI MODEL

Pada kondisi setimbang tersebut, penyakit akan selalu ada sampai waktu tak terbatas. Oleh karena itu, penyakit tersebut bersifat endemik. Maka kondisi setimbang tersebut dicapai saat 𝑸 𝟏 = 𝒔 βˆ— , π’Š βˆ— , 𝒓 βˆ— , 𝒑 βˆ— = (0.175,0.634, 0.126,0.063). Titik 𝑸 𝟏 tersebut merupakan titik kesetimbangan endemik karena nilai π’Š βˆ— β‰ πŸŽ. Selanjutnya, akan ditentukan kestabilan dari titik kesetimbangan endemik 𝑸 𝟏 . Besarnya rasio reproduksi dasar pada saat πŸβˆ’π’’= 0 adalah 𝑹 𝟎 =5.714. Nilai 𝑹 𝟎 >𝟏 mengakibatkan keempat nilai eigen matriks Jacobian pada model ini berupa bilangan real negatif. Oleh karena itu, titik kesetimbangan endemik 𝑸 𝟏 bersifat stabil asimtotik.

Agar penyebaran penyakit dapat dicegah dengan sukses, maka tingkat vaksinasi yang dilakukan harus cukup lebih besar dari tingkat vaksinasi minimum. Oleh karena itu, selanjutnya dilakukan simulasi untuk 1βˆ’π‘ž > 0.3

Berdasarkan Gambar 3. 4 untuk 1βˆ’π‘ž > 0 Berdasarkan Gambar 3.4 untuk 1βˆ’π‘ž > 0.3, 𝑖(𝑑)β†’0 artinya penyakit akan menghilang dari populasi dalam waktu tertentu. Semakin tinggi tingkat vaksinasi, penyakit akan menghilang dari populasi dalam waktu yang semakin cepat. Titik kesetimbangan yang dicapai adalah 𝑄 0 =𝑠,𝑖,π‘Ÿ,𝑝= (0.25, 0, 0.50, 0.25) Titik kesetimbangan yang dimaksud adalah titik kesetimbangan bebas penyakit karena proporsi individu infectious (i) bernilai nol. Besarnya rasio reproduksi dasar adalah 𝑅 0 =0.685. Titik kesetimbangan bebas penyakit 𝑄 0 tersebut bersifat stabil asimtotik karena 𝑅 0 <1.

Pada tabel 3.6 nilai 1βˆ’π‘ž akan diubah-ubah untuk mendapatkan kapan saat 𝑅 0 berubah dari < 1 sampai dengan > 1 artinya akan ditentukan nilai minimum dari 1βˆ’π‘ž sehigga penyakit akan hilang. Dari table 3.6 sampai dengan 3.8 terlihat bahwa nilai 1βˆ’π‘ž minimum untuk menanggulangi penyakit influenza apabila diberikan nilai-nilai parameter lain dengan 𝛽 yang diberikan antara 0.8 sampai 1 adalah 0.36 artinya minimal harus ada 36% yang divaksinasi dari seluruh individu yang rentan agar penyakit tidak meluas.

TERIMA KASIH