METODE ENUMERASI IMPLISIT

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
DISTRIBUSI PELUANG KONTINU
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

METODE ENUMERASI IMPLISIT

Pendahuluan Merupakan metode integer programming (IP) yang pada dasarnya hampir mirip dengan metode knapsack. Semua variabel keputusan harus berharga 0 atau 1

Perbandingan Metode IP Branch and Bound Knapsack Enumerasi Implisit Variabel Keputusan = 2 Variabel Keputusan ≥ 2 Fungsi Pembatas ≥ 1 Fungsi Pembatas = 1 Nilai VK bernilai semua bilangan real dan memiliki arti sebenarnya Nilai VK bernilai 0 atau 1

Prosedur Metode Enumerasi Implisit (1) Melakukan penyempurnaan terbaik bagi suatu node : Input harga setiap variabel keputusan kepada fungsi pembatas untuk menentukan apakah fisible atau tidak

Prosedur Metode Enumerasi Implisit (2) 2. Menguji fisibilitas dari semua fungsi pembatas Jenis Pembatas Tanda pada koefesien variabel pada pembatas Nilai pada variabel pembatas ≤ + - 1 ≥

Aturan pencabangan node Jika langkah 1 didapatkan hasil fisible dan langkah 2 tidak fisible atau sebaliknya,maka lakukan pencabangan pada node tersebut Jika langkah 1 dan 2 fisible, maka node berhenti (calon solusi) Jika langkah 1 dan 2 tidak fisible, maka node berhenti (fathomed)

Contoh : Maks Z = -7X1 – 3X2 – 2X3 – X4 – 2X5 s/t -4X1 – 2X2 + X3 – 2X4 – X5 ≤ -3 -4X1 – 2X2 - 4X3 + X4 + 2X5 ≤ -7 Xi = 0 atau 1

Node 1 Langkah 1 : Penyempurnaan terbaik : X1 = 0 X2 = 0 X3 = 0 X4 = 0 X5 = 0 P1 : -4(0) – 2(0) + (0) – 2(0) – (0) ≤ -3 0 ≤ -3 (TF) P2 : -4(0) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 0 ≤ -7 (TF)

Node 1 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 1 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(1) + (0) – 2(1) – (1) ≤ -3 -9 ≤ -3 (F) P2 : X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 1 1 X1 = 0 X1 = 1 2 3

Node 2 Langkah 1 : Penyempurnaan terbaik : X1 = 0 X2 = 0 X3 = 0 X4 = 0 X5 = 0 P1 : -4(0) – 2(0) + (0) – 2(0) – (0) ≤ -3 0 ≤ -3 (TF) P2 : -4(0) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 0 ≤ -7 (TF)

Node 2 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 0 X2 = 1 X3 = 0 X4 = 1 X5 = 1 -4(0) – 2(1) + (0) – 2(1) – (1) ≤ -3 -5 ≤ -3 (F) P2 : X1 = 0 X2 = 1 X3 = 1 X4 = 0 X5 = 0 -4(0) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -6 ≤ -7 (TF)

Node 3 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 0 X3 = 0 X4 = 0 X5 = 0 P1 : -4(1) – 2(0) + (0) – 2(0) – (0) ≤ -3 -4 ≤ -3 (F) P2 : -4(1) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 -4 ≤ -7 (TF)

Node 3 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 1 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(1) + (0) – 2(1) – (1) ≤ -3 -9 ≤ -3 (F) P2 : X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 3 3 X2 = 0 X2 = 1 4 5

Node 4 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 0 X3 = 0 X4 = 0 X5 = 0 P1 : -4(1) – 2(0) + (0) – 2(0) – (0) ≤ -3 -4 ≤ -3 (F) P2 : -4(1) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 -4 ≤ -7 (TF)

Node 4 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 0 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(0) + (0) – 2(1) – (1) ≤ -3 -7 ≤ -3 (F) P2 : X1 = 1 X2 = 0 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(0) – 4(1) + (0) + 2(0) ≤ -7 -8 ≤ -7 (F)

Node 4 4 X3 = 0 X3 = 1 6 7

Node 6 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 0 X3 = 0 X4 = 0 X5 = 0 P1 : -4(1) – 2(0) + (0) – 2(0) – (0) ≤ -3 -4 ≤ -3 (F) P2 : -4(1) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 -4 ≤ -7 (TF)

Node 6 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 0 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(0) + (0) – 2(1) – (1) ≤ -3 -7 ≤ -3 (F) P2 : X1 = 1 X2 = 0 X3 = 0 X4 = 0 X5 = 0 -4(1) – 2(0) – 4(0) + (0) + 2(0) ≤ -7 -4 ≤ -7 (TF)

Node 7 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 0 X3 = 1 X4 = 0 X5 = 0 P1 : -4(1) – 2(0) + (1) – 2(0) – (0) ≤ -3 -3 ≤ -3 (F) P2 : -4(1) – 2(0) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 7 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 0 X3 = 1 X4 = 1 X5 = 1 -4(1) – 2(0) + (1) – 2(1) – (1) ≤ -3 -6 ≤ -3 (F) P2 : X1 = 1 X2 = 0 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(0) – 4(1) + (0) + 2(0) ≤ -7 -8 ≤ -7 (F)

Node 7 Merupakan calon solusi yang didapatkan Masukkan nilai variabel keputusan pada penyempurnaan terbaik X1 = 1 X2 = 0 X3 = 1 X4 = 0 X5 = 0 Z = -7(1) – 3(0) – 2(1) – (0) – 2(0) = -9

Node 5 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 1 X3 = 0 X4 = 0 X5 = 0 P1 : -4(1) – 2(1) + (0) – 2(0) – (0) ≤ -3 -6 ≤ -3 (F) P2 : -4(1) – 2(1) – 4(0) + (0) + 2(0) ≤ -7 -6 ≤ -7 (TF)

Node 5 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 1 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(1) + (0) – 2(1) – (1) ≤ -3 -9 ≤ -3 (F) P2 : X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 5 5 X3 = 0 X3 = 1 8 9

Node 8 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 1 X3 = 0 X4 = 0 X5 = 0 P1 : -4(1) – 2(1) + (0) – 2(0) – (0) ≤ -3 -6 ≤ -3 (F) P2 : -4(1) – 2(1) – 4(0) + (0) + 2(0) ≤ -7 -6 ≤ -7 (TF)

Node 8 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 1 X3 = 0 X4 = 1 X5 = 1 -4(1) – 2(1) + (0) – 2(1) – (1) ≤ -3 -9 ≤ -3 (F) P2 : X1 = 1 X2 = 1 X3 = 0 X4 = 0 X5 = 0 -4(1) – 2(1) – 4(0) + (0) + 2(0) ≤ -7 -6 ≤ -7 (TF)

Node 9 Langkah 1 : Penyempurnaan terbaik : X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 P1 : -4(1) – 2(1) + (1) – 2(0) – (0) ≤ -3 -5 ≤ -3 (F) P2 : -4(1) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 9 Langkah 2 : Uji Fisibilitas Pembatas P1 : X1 = 1 X2 = 1 X3 = 1 X4 = 1 X5 = 1 -4(1) – 2(1) + (1) – 2(1) – (1) ≤ -3 -8 ≤ -3 (F) P2 : X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 -4(1) – 2(1) – 4(1) + (0) + 2(0) ≤ -7 -10 ≤ -7 (F)

Node 9 Merupakan calon solusi yang didapatkan Masukkan nilai variabel keputusan pada penyempurnaan terbaik X1 = 1 X2 = 1 X3 = 1 X4 = 0 X5 = 0 Z = -7(1) – 3(1) – 2(1) – (0) – 2(0) = -12

1 X1= 0 X1= 1 3 2 X2= 0 X2= 1 4 5 X3= 1 X3= 0 X3= 1 X3= 0 6 7 8 9

Latihan soal : Sebuah perusahaan mendapat tawaran untuk mengangkut 5 jenis barang pada waktu yang bersamaan. Pesawat tersebut dapat mengangkut maksimum 2000 kg dan volume kabin maksimumnya adalah 200 𝑚 3 Berikut data mengenai barang yang diangkut : Tentukan jenis barang yang dapat diangkut oleh pesawat tersebut Jenis Berat (kg) Volume ( 𝑚 3 ) Harga (Rp) 1 1000 70 75.000 2 1100 100 90.000 3 799 120.000 4 800 80 110.000 5 500 50 70.000

Latihan soal : Sebuah perusahaan alat angkut mendapat permintaan untuk mengangkut 5 jenis mesin produksi. Kapal yang disediakan untuk mengangkut mesin-mesin tersebut mempunyai kapasitas daya angkut maksimum 112 ton dengan volume 109 𝑚 3 . Tentukan mesin mana yang harus diangkut terlebih dahulu agar mempunyai nilai terbesar Jenis mesin Berat/unit Volume/unit Harga/unit 1 5 4 2 8 7 3 6