1. SISTEM BILANGAN REAL.

Slides:



Advertisements
Presentasi serupa
0.Review Bilangan Riil R = himpunan semua bilangan riil (nyata)
Advertisements

PERTEMUAN 2.
Bab 2 Pertidaksamaan Oleh : Dedeh Hodiyah.
Sistem Bilangan Real MA 1114 Kalkulus 1.
BAB I SISTEM BILANGAN.
BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK
Sistem Bilangan Riil.
SISTEM BILANGAN RIIL Pertemuan ke -2.
BAB I SISTEM BILANGAN.
Standar Kompetensi : Memecahkan Masalah Berkaitan Dengan Konsep Operasi Bilangan Real Kompetensi Dasar : Menerapkan Operasi Pada Bilangan Real Indikator.
Pertidaksamaan Kuadrat
MATEMATIKA DASAR.
Pertemuan 2 (Bilangan Asli) .::Dra. Endang M. Kurnianti::.
KALKULUS I STIMIK BINA ADINATA. BIODATA DOSEN  Muhammad Awal Nur, S.Pd., M.Pd  Bulukumba, 24 – 10 – 1988  Desa Balong, Kec. Ujung Loe 
Bilangan Real Himpunan bilangan real adalah himpunan bilangan yang merupakan gabungan dari himpunan bilangan rasional dan himpunan bilangan irasional Himpunan.
MATEMATIKA 4 TPP: 1202 Disusun oleh
Himpunan Bilangan Real
BILANGAN BULAT.
Bilangan Bulat By: Novika Anggrieni, S.Pd.
BILANGAN BULAT.
KALKULUS I.
MATEMATIKA DASAR I HIMPUNAN BILANGAN REAL
PERTIDAKSAMAAN Inne Novita Sari, M.Si.
Kania Evita Dewi Sistem Bilangan Real.
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
Sistem Bilangan Real.
KOMPOSISI FUNGSI DAN FUNGSI INVERS
SISTEM BILANGAN REAL/RIIL
BILANGAN BULAT Oleh Ira Selfiana ( )
Matematika & Statistika
Kania Evita Dewi Sistem Bilangan Real.
PERTIDAKSAMAAN.
PERTIDAKSAMAAN.
JENIS- JENIS PERTIDAKSAMAAN
BAB 6 PERTIDAKSAMAAN.
PRA – KALKULUS.
Sistem Bilangan Riil.
Bilangan Asli Bilangan Bulat Bilangan rasional Bilangan Riil.
Pertemuan 1 Sistem Bilangan Real Irayanti Adriant, S.Si, MT.
MATRIKULASI KALKULUS.
KALKULUS I Oleh : Inne Novita Sari
Pertemuan 2 (Himpunan Bilangan) .::Erna Sri Hartatik::.
BILANGAN.
BEBERAPA DEFINISI FUNGSI
Persamaan Kuadrat (1) HADI SUNARTO, SPd
Oleh : Epha Diana Supandi, M.Sc
PERSAMAAN DAN PERTIDAKSAMAAN KUADRAT
Pertemuan 2 (Bilangan Asli) .::Dra. Endang M. Kurnianti::.
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
PRE UTS Matematika dan Statistik (Ilmu dan Teknologi Lingkungan)
1 1.1 Sistem Bilangan BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK Himp Bil. real Himp Bil. Immaginair Himp Bil. Irrasional Himp Bil. Rasional Himp Bil.
KALKULUS I Oleh : Inne Novita Sari
PERTIDAKSAMAAN OLEH Ganda satria NPM :
Pertidaksamaan Oleh : M Zakaria Al Ansori Alifian Maulidzi Bayu Kris.
Rina Pramitasari, S.Si., M.Cs.
BILANGAN BULAT By_hidayati (a ).
MATEMATIKA I (KALKULUS)
Sistem Bilangan Riil.
BAB 4 PERTIDAKSAMAAN.
SISTEM BILANGAN REAL.
Sifat Sifat Bilangan Real
Sistem Bilangan Riil.
Matematika Teknik Arsitektur.
Materi perkuliahan sampai UTS
Dosen : Dra.Rustina & Fevi Novkaniza, M.Si
Sistem Bilangan Riil Contoh soal no. 5 susah. Kerjakan juga lat.soal.
BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK
KALKULUS - I.
PERTIDAKSAMAAN BENTUK AKAR
I. SISTEM BILANGAN REAL.
Transcript presentasi:

1. SISTEM BILANGAN REAL

1.1 SISTEM BILANGAN REAL Semesta pembicaraan dalam Kalkulus : Himp. Bilangan Real. Himp. Bilangan Real merupakan gabungan dari himp. bilangan Rasional dan himp. Bilangan Irasional. Secara lengkap dapat dilihat dari bagan berikut: R = Himp.Bil. Real Q = Himp.Bil. Rasional Z = Himp.Bil. Bulat Gb. 1.1 Diagram Venn Himpunan Bilangan Real N = Himp. Bil. Asli

Sifat-sifat R : Sifat Medan Jika x, y, z adalah anggota bilangan Real, maka x + y = y + x dan xy = yx ( hukum komutatif) x + (y+z) = (x+y) + z dan x(yz)=(xy)z (hukum asosiatif) x(y+z) = xy + xz (hukum distributif) Unsur Identitias. sehingga x + 0 =x dan x.1=x. Unsur Invers. dan Sifat Urutan * Trikotomi. Jika x dan y bilangan, maka pasti berlaku salah satu x < y atau x = y atau x > y. * Transitif. * Penambahan. * Perkalian. Jika z bilangan positif, Jika z bilangan negatif, ,

Garis bilangan : Interval dan himpunan Himpunan Bilangan Real ( R ) secara kongkrit dapat dinyatakan sebagai suatu garis bilangan. Bagian yang lebih kecil dari garis bilangan disebut interval ( selang ). R koordinat -3 -2 -1 0 1 2 3 4 Gb. 1.2 Garis bilangan Real

Interval dan Penulisannya interval tutup a b interval buka a b interval setengah buka a b interval setengah buka a b interval tak terbatas a interval tak terbatas a R

1.2 Pertaksamaan Bentuk umum pertaksamaan adalah : (1.1) dengan A(x), B(x), C(x) dan D(x) suku banyak. ( tanda < dapat diganti oleh : >, ,  ). Himpunan semua bilangan Real x yang memenuhi pertaksamaan (1.1) disebut Himpunan Penyelesaian (Hp) pertaksamaan (berupa selang)

Cara menentukan himpunan penyelesaian : Buat ruas kanan (1.1) menjadi nol atau Bentuk menjadi Faktorkan atau uraikan P(x) dan Q(x) menjadi faktor linier dan atau faktor kuadrat definit positif Tentukan titik pemecah ( pembuat nol ) dari masing-masing faktor linier , lalu gambarkan dalam garis bilangan. Gunakan satu titik uji untuk menentukan tanda ( + atau - ) interval pada garis bilangan

Contoh Tentukan Himpunan Penyelesaian dari : Jawab : titik pemecah : x=1 , x=-2 , x=0 ++ --- ++ --- -2 1 Maka

1.3 Pertaksamaan dengan Nilai Mutlak Definisi nilai mutlak adalah : Sifat-sifat nilai mutlak : 1. dan 2. Jika maka 3. 4.

Contoh : Tentukan Hp dari Jawab : Dengan menggunakan sifat yang ke 2 bagian 2, kita dapatkan atau Ini tak lain merupakan dua pertaksamaan yang akan dicari penyelesaiannya. (i). (ii). Sehingga Himpunan penyelesaian dari pertaksamaan tersebut adalah :

1.4 Akar Kuadrat Setiap bilangan positif mempunyai dua akar kuadrat. Misalnya, dua akar kuadrat dari 4 adalah 2 dan -2 ; dua akar kuadrat dari 16 adalah 4 dan -4. Untuk , lambang disebut akar kuadrat utama dari a, yang menunjukkan akar kuadrat tak negatif dari a. Jadi dan Jadi , penting untuk diingat bahwa ,