DIFERENSIAL VEKTOR KULIAH 2.

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
DISTRIBUSI PELUANG KONTINU
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

DIFERENSIAL VEKTOR KULIAH 2

MATERI Fungsi dan medan skalar Fungsi dan medan vektor Kurva, tangen dan panjang busur MATERI

Fungsi skalar dan medan skalar Fungsi skalar adalah fungsi yang memuat besaran saja, tanpa arah. Ex: f= f(P) Dimana P adalah titik di daerah defenisi yang bisa merupakan daerah 3 dimensi, di permukaan atau kurva Fungsi skalar didefenisikan sebagai medan skalar pada daerah defenisi/ permukaan/ kurva Ex:medan temperatur dalam tubuh medan tekanan di udara di dalam atmosfir Fungsi skalar dan medan skalar

Jika setiap titik P (x,y,z) dari daerah R yang merupakan bidang skalar  (x,y,z) maka  (x,y,z) adalah suatu fungsi skalar dan medan skalar dinyatakan bearada di daerah R

FUNGSI VEKTOR DAN MEDAN VEKTOR Fungsi vektor adalah fungsi yang memuat besaran dan arah V=V(v1(P), v2(P),v3(P)) Medan vektor adalah fungsi vektor di daerah defenisi 3 dimensi, permukaan atau kurva FUNGSI VEKTOR DAN MEDAN VEKTOR

Fungsi skalar dan vektor dapat juga merupakan fungsi waktu atau parameter lain

Turuanan dari vector v diperoleh dengan menurunkan (diferensial) Dari kompenen vector tersebut secara terpisah

KURVA

Koordinat x, y dan z adalah koordinat kartesian (koordinat persegi). Untuk masing masing harga t=t0 yang dihubungkan dengan titik C untuk posisi vector r(t0) dengan koordinat x(t0),y(t0) dan z(t0). Koordinat Parametrik memiliki kelebihan dimana kurva C dalam fungsi t dapat diproyeksikan ke bidang xy dan xz.

PERSAMAAN PARAMETRIK KURVA

BENTUK LIMIT r ‘(t)= tangen vektor U=Unit tangen vektor Tangen di titik P pada kurva c

Unit tangen vektor

Pergerakan partikel, kecepatan dan percepatan Bila pergerakan partikel pada kurva C dinyatakan dalam persamaan parameterik r(t) yang merupakan fungsi waktu t maka tangen vektor dari C disebut vektor kecepatan v. Panjangnya kurva dengan kecepatan v adalah |v|=|r’| = 𝑟 ′ .𝑟′ =ds/dt Turunan kedua r(t) disebut sebagai vektor percepatan a(t)=v’(t)=r”(t) Pergerakan partikel, kecepatan dan percepatan

Arah tangensial dan normal percepatan a=atan + anorm anorm atan anorm P atan V(t)C Arah tangensial dan normal percepatan

PANJANG KURVA PANJANG BUSUR DARI KURVA UNIT TANGEN VEKTOR

Tentukan vektor satuan tangen (gradien) pada titik (2,4,7) untuk kurva dengan persamaan Parametrik x=2t;y=t2+3,z=2t2+5 (a) Tentukan persaman vektornya (b) Tentukan harga t dimana hasil vektor pada titik (2,4,7), trial and error dari persamaan Untuk t =1 maka r(1)= 2i+4j+7k ok (c) Tentukan turunan dr/dt= r’(t) r’(t)= 2i+2tj+4tk pada t=1 maka r’(t)= 2i+2j+4k (d) Tentukan besaran |r’| (e) Tangen satuan LATIHAN

Tentukan turunan fektor (turunan 1 dan 2) dari vector berikut Latihan

KESIMPULAN Turunan pertama dari fungsi skalar adalah tangen vektor Tangen dari kurva diperoleh dari turunan pertama dari persamaan parameteriknya Unit tangen vektor adalah tangen vektor dibagi dengan besaran vektor tsb. Panjang busur kurva adalah integral dari akar perkalian perkalian titik vektor gradien KESIMPULAN