BILANGAN REAL BILANGAN BERPANGKAT
REAL NUMBERS EXSPONENT NUMBERS
Properties of the Exponent Numbers 2 2 2 2 ... 2 Symbolized by 2n Factor n 3 3 3 3 ... 3 Symbolized by 3n Factor n 8 8 8 8 ... 8 Symbolized by 8n Factor n Defined by: 1) an = a a a a . . . a Factor n 2) a1 = a Hal.: 3 BILANGAN REAL
Sifat-sifat Bilangan Berpangkat 2 2 2 2 ... 2 Dilambangkan dengan 2n Faktor n 3 3 3 3 ... 3 Dilambangkan dengan 3n Faktor n 8 8 8 8 ... 8 Dilambangkan dengan 8n Faktor n Definisi: 1) an = a a a a . . . a Faktor n 2) a1 = a Hal.: 4 BILANGAN REAL
Multiplication of the Exponent Numbers a a a … a a a a … a p factor number a q factor number a (p + q) factor number a means ap+q ap aq = ap+q Example : x5 x 12= x5+12 = x17 32 33 = 32+3 = 35 76 713= 76+13 = 719 Hal.: 5 BILANGAN REAL
Perkalian Bilangan Berpangkat a a a … a a a a … a p faktor number a q faktor number a (p + q) faktor bilangan a berarti ap+q ap aq = ap+q Contoh : x5 x 12= x5+12 = x17 32 33 = 32+3 = 35 76 713= 76+13 = 719 Hal.: 6 BILANGAN REAL
The Division of Exponent Number ap = ap-q, a = 0 aq Examples : 1. 54 : 52 = 54-2 = 52 = 25 2. Hal.: 7 BILANGAN REAL
Pembagian Bilangan Berpangkat ap = ap-q, a = 0 aq Contoh : 1. 54 : 52 = 54-2 = 52 = 25 2. Hal.: 8 BILANGAN REAL
The Exponentiation of Exponent Number (ap)2 = ap, ap, ap … ap… q factor = ap.q So (ap)q = ap.q Examples : 1. (52)3 = (5)2.3 = 56 = 15625 2. = 33 = 27 Hal.: 9 BILANGAN REAL
Perpangkatan Bilangan Berpangkat (ap)2 = ap, ap, ap … ap… q factor = ap.q ap.q Jadi (ap)q = Jadi : 1. (52)3 = (5)2.3 = 56 = 15625 = 33 = 27 2. Hal.: 10 BILANGAN REAL
The Exponent of Double Multiplication or Numbers Greater (ab)p = (ab) (ab) (ab) . . . (ab) p factor (ab) = (a b) (a b) (a b) . . . (a b) p factor a and p factor b = (a a a . . . a) (b b b . . . b) According to definition According to definition p faktor a p faktor a p factor a p faktor b p faktor b p factor b = ap bp = apbp So (ab)p =apbp Examples : (3 7)5 = 1. 215 = 3575 2. 125 = (2 2 3)5 = 25 25 35 = 210 35 = 21035 Hal.: 11 BILANGAN REAL
Perpangkatan dari perkalian dua atau lebih bilangan (ab)p = (ab) (ab) (ab) . . . (ab) p faktor (ab) = (a b) (a b) (a b) . . . (a b) p factor a and p factor b = (a a a . . . a) (b b b . . . b) menurut definisi menurut definisi p faktor a p faktor a p factor a p faktor b p faktor b p factor b ap bp = = apbp Jadi (ab)p =apbp Contoh : (3 7)5 = 1. 215 = 3575 2. 125 = (2 2 3)5 = 25 25 35 = 210 35 = 21035 Hal.: 12 BILANGAN REAL
The Exponent Fraction Numbers a a a a a a … a _______________________ = a a a... a ap : aq = (p >q) a a a … a p – q factor q factor number a = athe exponent ? Means ap : aq = ap ‑ q = ap-q Examples : 36 : 34 = 36 ‑ 4 = 32 713 : 78 = 713-8 = 75 Hal.: 13 BILANGAN REAL
Perpangkatan Bilangan Pecahan a a a a a a … a _______________________ = a a a... a ap : aq = (p >q) a a a … a p – q factor q faktor bilangan a = apangkat berapa ? = ap-q ap : aq = ap ‑ q Berarti Contoh : 36 : 34 = 36 ‑ 4 = 32 713 : 78 = 713-8 = 75 Hal.: 14 BILANGAN REAL
The Exponent Fraction Numbers p factor p factor number a a a a a a a … a ap _______________________ ____ = = b b b b b b … b bp p factor number b ap So : ____ bp Hal.: 15 BILANGAN REAL
Perpangkatan Bilangan Pecahan p faktor p faktor bilangan a a a a a a a … a ap _______________________ ____ = = b b b b b b … b bp p faktor bilangan b ap Jadi : ____ bp Hal.: 16 BILANGAN REAL
Zero Exponent Number If p, q are positive integer anumber and p = q then ap-q = a0 To determine the value of zero exponent number, look at this explanation below! a0 = ap-p ap = ap = 1 So, for every a R and a = 0 then we have a0 = 1 Hal.: 17 BILANGAN REAL
Bilangan Berpangkat Nol Jika p, q bilangan bulat positif dan p = q dan ap-q = a0 Untuk menentukan nilai dari bilangan pangkat nol, perhatikan uraian berikut: a0 = ap-p ap = ap = 1 Jadi, untuk setiap a R dan a = 0 berlaku a0 = 1 Hal.: 18 BILANGAN REAL
The Negative Exponent Number ap = a0-p = a-p 1 a-p = ap a0 1 ap = ap So, for every a R, a = 0, and positive integer number then we have a-p = or ap = 1 a-p Examples : 1 5 1. 5-5 = 2. Hal.: 19 BILANGAN REAL
Bilangan Berpangkat Negatif ap = a0-p = a-p 1 a-p = ap a0 1 ap = ap Jadi, untuk setiap a R, a = 0, dan p bilangan bulat positif berlaku a-p = dan ap = 1 a-p Contoh : 1 5 1. 5-1 = 2. Hal.: 20 BILANGAN REAL
Fraction Exponent Numbers The exponent number of which is exponent by n can be rationalize as follows : (a ) p q q p q p q p q p q = a , a , a , … a as much as q a q. p q = ap = p (a ) q = is degined as exponent root at q from ap, then p = a q Hal.: 21 BILANGAN REAL
Bilangan Berpangkat Pecahan Bilangan berpangkat yang yang dipangkatkansebesar n dapat ditulis sebagai berikut: (a ) p q = p q a , a , a , … a as much as q = a q. p q ap = (a ) p q = Diartikan sebagai akar pangkat ke-q dari ap, sehingga: p a q = Hal.: 22 BILANGAN REAL
Fraction Exponent Numbers Examples : 1. 2. 3. 4. Hal.: 23 BILANGAN REAL
Bilangan Berpangkat Pecahan Contoh : 1. 2. 3. 4. Hal.: 24 BILANGAN REAL
The Properties of Exponent Numbers Operation If a, b are real numbers, and p, q are integer numbers, then : ap aq = ap+q ap : aq = ap-q ; a 0 (ap)q = apq (ab)p = ap bp . a-p = ; a 0. a0 = 1, a 0 b ; b 0 Hal.: 25 BILANGAN REAL
Sifat Operasi Bilangan Berpangkat Jika a, b adalah bilangan real dan p, q adalah bilangan bulatb maka : ap aq = ap+q ap : aq = ap-q ; a 0 (ap)q = apq (ab)p = ap bp ; b 0 a-p = ; a 0. a0 = 1, a 0 b asal q a p p/q = terdefinisi Hal.: 26 BILANGAN REAL
Roots Examples : Meanwhile : Because : 1. The Definition of Roots As we have discussed before, that Roots are numbers in the root symbol which cannot produce rational numbers Examples : Meanwhile : Because : 1, 2, and 8 are not irrational numbers Hal.: 27 BILANGAN REAL
Bentuk Akar Examples : Meanwhile : Because : 1. Definisi Bentuk Akar Seperti yang sudah dibahas pada sub bab sebelumnya, bahwa Bentuk akar adalah bilangan –bilangan di bawah tanda akarnya tidak dapat menghasilkan bilangan Rasional. Examples : 1, 2, and 8 are not irrational numbers Meanwhile : Because : Hal.: 28 BILANGAN REAL
Roots 2. Simplifying Roots Roots can be simplified by changing the number in the root into two numbers which one of them can be rooted and the other can not be rooted. Examples : 1. 2. Hal.: 29 BILANGAN REAL
Bentuk Akar 2. Menyederhanakan Bentuk Akar Bentuk akar dapat disederhanakan dengan cara mengubah bilangan di dalam akar tersebut menjadi dua bilangan dimana bilangan yang satu dapat diakarkan sedang bilangan yang lain tidak dapat diakarkan. Contoh : 1. 2. Hal.: 30 BILANGAN REAL
Roots 3. Root Operation Operation base for a ≥ 0 and b ≥ 0 Addition and subtraction can be simplified if the roots are the same kind. Example : = = = Multiplication of roots using properties Examples : 1. 2. Hal.: 31 BILANGAN REAL
Bentuk Akar 3. Operasi Bentuk Akar Dasar Operasi untuk a ≥ 0 dan b ≥ 0 real a if asal a, n = Pejumlahan dan pengurangan dapat disederhanakan apabila akar-akar sejenis. Contoh : = = = Perkalian bentuk akar dengan menggunakan sifat Contoh : 1. 2. Hal.: 32 BILANGAN REAL
Roots Division of Roots (i) form Examples : 1. 2. Hal.: 33 BILANGAN REAL
Bentuk Akar Pembagian Bentuk Akar (i) Bentuk Contoh : 1. 2. Hal.: 34 BILANGAN REAL
Roots (ii) form Examples : 1. = = = = = 2. = = = = Hal.: 35 BILANGAN REAL
Bentuk Akar (ii) Bentuk Contoh : 1. = = = = = 2. = = = = Hal.: 36 BILANGAN REAL
Roots (iii) form Example : = = = = Hal.: 37 BILANGAN REAL
Bentuk Akar (iii) Bentuk Contoh : = = = = Hal.: 38 BILANGAN REAL
Roots 4. Solving the exponent equation Properties used : ap = aq p = q Examples : Find the values of x that satisfy the following equations : 1. = 64 2. = Hal.: 39 BILANGAN REAL
Bentuk Akar 4. Menyelesaikan persamaan dalam bentuk pangkat Sifat yang digunakan : ap = aq p = q = Contoh : Carilah nilai x yang memenuhi persamaan di bawah ini: 1. = 64 2. = Hal.: 40 BILANGAN REAL
Roots ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Answer : = 1. = 64 2. = 43 = 3x = 3 = x = 1 = Hal.: 41 BILANGAN REAL
Bentuk Akar ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ Jawab : = 1. = 64 2. = 43 = = 3x 3 = = = Hal.: 42 BILANGAN REAL
Logarithm alog b = c ac = b by a > 0 , a 1 and b > 0 Look at : ab = c ab = …. find the result of exponent …b = c find the exponent root of b from c a... = c find the exponent from a, so that the result is c = find the logarithm of base a from c number = alog c = … alog b = c ac = b by a > 0 , a 1 and b > 0 a. Is base logarithm number b. Is number written in logarithm Hal.: 43 BILANGAN REAL
Logaritma alog b = c ac = b dengan a > 0 , a 1 dan b > 0 Perhatikan : ab = c ab = …. Mencari hasil pemangkatan …b = c mencari akar pangkat b dari c a... = c mencari pangkat dari a, agar hasilnya c = mencari logarima dengan pokok a dari bilangan c = alog c = … alog b = c ac = b dengan a > 0 , a 1 dan b > 0 a. Disebut bilangan pokok logaritma b. Disebut bilangan yang ditulis dalam bentuk logaritma Hal.: 44 BILANGAN REAL
Logarithm The Properties If a > 0 , a 1 , m > 0 , n > 0 and x R, then : alog ax = x alog (m.n) = alog m + alog n alog (m/n) = alog m - alog n alog mx = x. alog m alog m = If g > 0 , g 1 etc. an log b = alog b an log bm = alog b Hal.: 45 BILANGAN REAL
Logaritma Sifat-siifat Jika a > 0 , a 1 , m > 0 , n > 0 dan x R, then : alog ax = x alog (m.n) = alog m + alog n alog (m/n) = alog m - alog n alog mx = x. alog m alog m = jika g > 0 , g 1 etc. an log b = alog b an log bm = alog b Hal.: 46 BILANGAN REAL
Logarithm Examples : = 3 = 3 = = = = 5 = = = 1 = = = = = = = = = = = 1. = 3 2. = 3 3. = 4. = = = 5 5. = = = 1 6. = = = 12 7. = = 8. = = = 1 9. = = = 6 Hal.: 47 BILANGAN REAL
Logaritma Contoh : = 3 = 3 = = = = 5 = = = 1 = = = = = = = = = = = 1. 2. = 3 3. = 4. = = = 5 5. = = = 1 6. = = = 12 7. = = 8. = = = 1 9. = = = 6 Hal.: 48 BILANGAN REAL