PRESENTASI PERKULIAHAN

Slides:



Advertisements
Presentasi serupa
Soal Latihan 1 Diberikan pernyataan “Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika”. (a)  Nyatakan pernyataan di atas dalam notasi.
Advertisements

LOGIKA Viska Armalina ST., M.Eng.
Matematika Diskrit Dr.-Ing. Erwin Sitompul
Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus
Materi Kuliah IF2091 Struktur Diskrit
DASAR-DASAR LOGIKA Septi Fajarwati, S.Pd..
LOGIKA - 3 Viska Armalina, ST., M.Eng.
TABEL KEBENARAN.
Tabel Kebenaran LOGIKA INFORMATIKA Program Studi TEKNIK INFORMATIKA
Bab 1 Logika Matematika Matematika Diskrit.
LOGIKA LOGIKA LOGIKA.
Tautologi dan Kontradiksi
Mata Kuliah Logika Informatika 3 SKS Bab II : Proposisi.
Materi Kuliah IF2091 Struktur Diskrit
MATEMATIKA DISKRIT By DIEN NOVITA.
Logika (logic).
MATEMATIKA DISKRIT By DIEN NOVITA.
LOGIKA MATEMATIKA PERTEMUAN 5 KALKULUS PROPOSISI
PROPORSI (LOGIKA MATEMATIKA)
MATEMATIKA DISKRIT MATEMATIKA DISKRIT ADALAH CABANG MATEMATIKA YANG MEMPELAJARI OBJEK-OBJEK DISKRIT OBJEK DISKRIT ADALAH SEJUMLAH BERHINGGA ELEMEN-ELEMEN.
BAB 1 KALKULUS PROPOSISI
LOGIKA Purbandini, S.Si, M.Kom.
Matematika Diskrit Oleh Ir. Dra. Wartini.
Matematika Diskrit Logika Matematika Heru Nugroho, S.Si., M.T.
Pertemuan 2 LOGIKA (PROPOSISI).
Matematika Diskrit Logika Matematika Heru Nugroho, S.Si., M.T.
Pertemuan ke 1.
BAB 1 Logika Pengantar Logika
DASAR LOGIKA MATEMATIKA
LOGIKA Logika mempelajari hubungan antar pernyataan-pernyataan yang berupa kalimat-kalimat atau rumus-rumus, sehingga dapat menentukan apakah suatu pernyataan.
Matematika Informatika 2
PROPOSISI Citra N, S.Si, MT.
LOGIKA STRUKTUR DISKRIT K-2 Program Studi Teknik Komputer
LOGIKA MATEMATIKA Universitas Telkom
Matematika Diskrit Logika.
Matematika Diskrit Bab 1-logika.
Logika (logic).
Pertemuan # 2 Logika dan Pembuktian
Materi Kuliah Matematika Disktrit I Imam Suharjo
Logika Semester Ganjil TA
BAB 2 LOGIKA
Program Studi Teknik Informatika
IMPLIKASI (Proposisi Bersyarat)
MATEMATIKA DISKRIT LOGIKA MATEMATIKA.
ALGORITMA DAN PEMROGRAMAN
Matematika diskrit Kuliah 1
Oleh : Devie Rosa Anamisa
Disjungsi Eksklusif dan Proposisi Bersyarat
Matematika diskrit Logika Proposisi
Logika (logic).
Oleh : Cipta Wahyudi, S.Kom, M.Eng, M.Si
Pertemuan 1 Logika.
Dasar dasar Matematika
Materi Kuliah TIN2204 Struktur Diskrit
Adalah cabang dari matematika yang mengkaji objek-objek diskrit.
Proposisi Lanjut Hukum Ekuivalensi Logika
1.1 Proposisi & Proposisi Majemuk
Hukum Proposisi.
Proposisi Sri Nurhayati.
LOGIKA MATEMATIKA Logika matematika pada hakekatnya adalah suatu metode dalam komputasi menggunakan proposisi atau kalimat deklaratif. Kalimat deklaratif.
Matematika Diskrit Logika Matematika Dani Suandi,S.Si.,M.Si.
Tabel Kebenaran Dan Proposisi Majemuk
Pengantar Logika PROPOSISI
BAB 2 LOGIKA MATEMATIKA.
LoGiKa InFoRmAtIkA Asrul Sani, ST. M.Kom MT Asrul Sani, ST M.Kom MT - Logika Informatika.
LOGIKA MATEMATIKA Logika matematika pada hakekatnya adalah suatu metode dalam komputasi menggunakan proposisi atau kalimat deklaratif. Kalimat deklaratif.
Pertemuan 1 Logika.
1 Logika Matematik. 2 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Materi Kuliah Matematika Diskrit
LOGIKA MATEMATIKA.
Transcript presentasi:

PRESENTASI PERKULIAHAN Agung Prasetyawan L2F007005 Alexander Adhyatma L2F007008

LOGIKA MATEMATIKA

PENGERTIAN LOGIKA Logika adalah dsiplin ilmu yang menelaah penurunan-penurunan dari kesimpulan yang valid dan tidak valid (dapat juga diumpamakan dengan bilangan 1 untuk valid dan 0 untuk yang tidak valid maupun sebaliknya)

LANJUT GAN… Logika adalah dasar dari segala penalaran dengan kata lain sebagai basis penalaran dari statement (pernyataan/premis) yang diberikan Dengan kata lain logika adalah reasoning atau rationality of statements

Teori Kebenaran dalam Matematika Diskret Ada 2 yaitu: Teori Korespondensi Teori Koherensi

Teori Korespondensi Teori yang pertama ialah teori korespondensi [Correspondence Theory of Truth], yang kadang kala disebut The accordance Theory of Truth. Menurut teori ini dinyatakan bahwa, kebenaran atau keadaan benar itu berupa kesesuaian [correspondence] antara arti yang dimaksud oleh suatu pernyataan dengan apa yang sungguh-sungguh terjadi merupakan kenyataan atau faktanya. Contoh : Ibukota Jawa Tengah adalah Semarang

Teori Koherensi Teori kebenaran koherensi adalah teori kebenaran yang didasarkan kepada kriteria koheren atau konsistensi. Suatu pernyataan disebut benar bila sesuai dengan jaringan komprehensif dari pernyataan-pernyataan yang berhubungan secara logis. Pernyataan-pernyataan ini mengikuti atau membawa kepada pernyataan yang lain. Contoh : percepatan terdiri dari konsep-konsep yang saling berhubungan dari massa, gaya dan kecepatan dalam fisika.

Proposisi Pernyataan atau kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya

CONTOH PROPOSISI Dari pernyataan berikut: Gajah jauh lebih besar daripada semut Apakah ini pernyataan? Ya Apakah ini proposisi ? Ya Apakah nilai kebenaran dari prposisi ini ? Benar

Contoh 2 T > 7 Apakah ini pernyataan? Ya Apakah ini proposisi ? Tidak Nilai kebenaran diatas bergantung pada T, padahal nilai T belum ditentukan

CONTOH 3 456 < 10 Apakah ini pernyataan? Ya Apakah ini proposisi ? Ya Apakah nilai kebenaran dari prposisi ini ? Salah

Proposisi dilambangkan dengan huruf kecil misalnya, p, q, r,... Contoh : p : 13 adalah bilangan ganjil q : x + y = y + x untuk setiap x dan y bilangan riil

Mengkombinasikan proposisi Misalkan p dan q adalah proposisi. 1. Konjungsi (conjunction): p dan q Notasi p ∧ q, 2. Disjungsi (disjunction): p atau q Notasi: p ∨ q 3. Ingkaran (negation) dari p : tidak p Notasi : ~p

Contoh diketahui proposisi : p : Hari rabu ini terjadi badai q : Murid SD diliburkan dari sekolah p ∧ q : Hari rabu ini terjadi badai dan murid SD diliburkan dari sekolah p ∨ q : Hari rabu ini terjadi badai atau murid SD diliburkan dari sekolah ∼p : Tidak benar hari rabu ini terjadi badai (atau: Hari rabu ini tidak terjadi badai)

Nyatakan dalam bentuk simbolik: (a) Pemuda itu tinggi dan tampan (b) Pemuda itu tinggi tapi tidak tampan (c) Pemuda itu tidak tinggi maupun tampan (d) Tidak benar bahwa pemuda itu pendek atau tidak tampan (e) Pemuda itu tinggi, atau pendek dan tampan (f) Tidak benar bahwa pemuda itu pendek maupun tampan Penyelesaian: (a) p ∧ q (b) p ∧ ∼q (c) ∼p ∧ ∼q (d) ∼(∼p ∨ ∼q) (e) p ∨ (∼p ∧ q) (f) ∼(∼p ∧ ∼q)

PROPOSISI MAJEMUK Proposisi majemuk disebut tautologi jika ia benar untuk semua kasus Proposisi majemuk disebut kontradiksi jika ia salah untuk semua kasus.

Hukum-hukum Logika 1. Hukum identitas: − p ∨ F ⇔ p − p ∧ T ⇔ p 2. Hukum null/dominasi: − p ∧ F ⇔ F − p ∨ T ⇔ T 3. Hukum negasi: − p ∨ ~p ⇔ T − p ∧ ~p ⇔ F 4. Hukum idempoten: − p ∨ p ⇔ p − p ∧ p ⇔ p

5. Hukum involusi (negasi ganda): − ~(~p) ⇔ p 6. Hukum penyerapan (absorpsi): − p ∨ (p ∧ q) ⇔ p − p ∧ (p ∨ q) ⇔ p 7. Hukum komutatif: − p ∨ q ⇔ q ∨ p − p ∧ q ⇔ q ∧ p 8. Hukum asosiatif: − p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r − p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r 9. Hukum distributif: − p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) − p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)  10. Hukum De Morgan: − ~(p ∧ q) ⇔ ~p ∨ ~q − ~(p ∨ q) ⇔ ~p ∧ ~q

CONTOH SOAL Diberikan pernyataan “Tidak benar bahwa dia belajar Algoritma tetapi tidak belajar Matematika”. (a) Nyatakan pernyataan di atas dalam notasi simbolik (ekspresi logika) (b) Berikan pernyataan yang ekivalen secara logika dengan pernyataan tsb (Petunjuk: gunakan hukum De Morgan)

PENYELESAIAN Misalkan p : Dia belajar Algoritma q : Dia belajar Matematika maka, (a) ~ (p ∧ ~ q) (b) ~ (p ∧ ~ q)⇔~ p ∨ q (Hukum De Morgan) dengan kata lain: “Dia tidak belajar Algoritma atau belajar Matematika”

Disjungsi Eksklusif Kata “atau” (or) dalam operasi logika digunakan dalam salah satu dari dua cara: 1. Inclusive or “atau” berarti “p atau q atau keduanya” Contoh: “Tenaga IT yang dibutuhkan menguasai Bahasa C++ atau Java”. 2. Exclusive or (Notasi : ⊕) “atau” berarti “p atau q tetapi bukan keduanya”. Contoh: “Ia dihukum 5 tahun atau denda 10 juta”.

Proposisi Bersyarat (kondisional atau implikasi) • Bentuk proposisi: “jika p, maka q” • Notasi: p → q • Proposisi p disebut hipotesis, antesenden,premis, atau kondisi • Proposisi q disebut konklusi   Contoh proposisi 1.Jika hari hujan, maka tanaman akan tumbuh subur. 2. Jika tekanan gas diperbesar, mobil melaju kencang.

Varian Proposisi Bersyarat Konvers (kebalikan): q → p Invers : ~ p → ~ q Kontraposisi : ~ q → ~ p

CONTOH Tentukan konvers, invers, dan kontraposisi dari: “Jika Amir mempunyai mobil, maka ia orang kaya” Penyelesaian: Konvers : Jika Amir orang kaya, maka ia mempunyai mobil Invers : Jika Amir tidak mempunyai mobil, maka ia bukan orang kaya Kontraposisi: Jika Amir bukan orang kaya, maka ia tidak mempunyai mobil

Bikondisional (Bi-implikasi) • Bentuk proposisi: “p jika dan hanya jika q” • Notasi: p ↔ q

CONTOH Diberikan pernyataan “Perlu memiliki password yang sah agar anda bisa log on ke server” (a) Nyatakan pernyataan di atas dalam bentuk proposisi “jika p, maka q”. (b) Tentukan ingkaran, konvers, invers, dan kontraposisi dari pernyataan tsb.

PENYELESAIAN Misalkan p : Anda bisa log on ke server q : Memiliki password yang sah maka (a) Jika anda bisa log on ke server maka anda memiliki password yang sah (b) Ingkaran: “Anda bisa log on ke server dan anda tidak memiliki password yang sah” Konvers: “Jika anda memiliki password yang sah maka anda bisa log on ke server” Invers: “Jika anda tidak bisa log on ke server maka anda tidak memiliki password yang sah” Kontraposisi: “Jika anda tidak memiliki password yang sah maka anda tidak bisa log on ke server”