3.

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
DISTRIBUSI PELUANG KONTINU
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

3

2

1

LOADING

G R O U P 5

STATISTIKA DESKRIPTIF KEMIRINGAN DAN KERUNCINGAN DISTRIBUSI DATA

Kemiringan Distribusi Data Keruncingan Distribusi Data KA 11.2A.04 MATERI PROFIL Kemiringan Distribusi Data Kesimpulan Keruncingan Distribusi Data PENUTUP

TEAM PENULIS 1.Risma Muhlida klik disini 2.Sefta Layli U.F. klik disini 3.Sefty Layla A.F klik disini 4.Noni Rulianty klik disini 5.Umi Hanifa klik disini

Materi Pembahasan 1.Noni Rulianty Klik Disini 2.Sefta Layli Uhdia F. Klik Disini 3.Umi Hanifah Klik Disini 4.Sefty Layla Ahda F. Klik Disini 5.Risma Muhlida Klik Disini

Sefta Layli Uhdia Fishaum NIM: 11140711 No.Absen : 22 Wordpress : Seftalydiaf.wordpress.com

Sefty Layla Ahda Fishiyam Nim : 11140724 No.Absen : 23 Alamat Web : Sahdalf.wordpress.com Sahdalf.blogspot.com “belajarlah mencintai hal yang tidak di sukai, karna dari hal yg tdk disukai salah satunya bisa menjadi SESUATU yg diharapkan”

Noni Rulianty Nim : 11140736 No.Absen : 24

Wordpress: Umianifah.wordpress.com Umi Hanifah NIM : 11140754 No.Absen : 25 Wordpress: Umianifah.wordpress.com

Kesimpulan Dalam mempelajari materi Kemiringan dan keruncingan distribusi data, rumus dispersi (ukuran penyebaran data) yang di antaranya : Rata-rata hitung, simpangan rata-rata, variansi dan simpangan baku, saling berkaitan untuk mencari nilai kemiringan dan keruncingan distribusi data tersebut.

Thank you to Our Lecturer

KEMIRINGAN DISTRIBUSI DATA Merupakan derajat atau ujuran dari ketidsksimetrian (Asimetri) suatu distribusi data. Kemiringan distribusi data terdapat 3 jenis : Simetris : menunjukkan letak nilai rat-rata hitung,median dan modus berhimpit(berkisar disatu titik) Miring kekanan :mempunyai nilai modus paling kecil dan rata-rata hitung paling besar Miring kekiri :mempunyai nilai modus paling besar dan rata-rata hitung paling kecil

Grafik Distribusi Kemiringan Simetri Miring Kekanan

Grafik Distribusi Kemiringan Miring Ke Kiri Grafik Distribusi Kemiringan

Rumus Kemiringan derajat distribusi data(α3) RUMUS PEARSON α= 𝟏 𝑺 ( 𝑿 – mod ) Atau α= 𝟑 𝑺 ( 𝑿 – med ) RUMUS MOMEN *Data tidakberkelompok ∝ 𝟑 = 𝟏 𝒏 𝑺 𝟑 ∑( 𝑿 𝒊 − 𝑿 )3 *Data Berkelompok ∝ 𝟑 = 𝟏 𝒏 𝑺 𝟑 ∑ 𝒇 𝒊 ( 𝒎 𝒊 − 𝑿 )3 =

Question 6,7,8,5,8,88 5,6,7,8,8,8 Mod=8 Data : Diperoleh: = 1/6(5+6+7+8+8+8)=42/6=7 Median Med=1/2(7+8)=7,5 Modus Mod=8

Standar Deviasi diperoleh dari variansinya yaitu = Standar Deviasi diperoleh dari variansinya yaitu STANDAR DEVIASINYA = 1,2

Karna α bertanda negatif maka distribusi data miring ke kiri Rumus Pearson Karna α bertanda negatif maka distribusi data miring ke kiri

Karna α bertanda negatif maka distribusi data, miring ke kiri Rumus Momen Karna α bertanda negatif maka distribusi data, miring ke kiri

Rumus Bowley ∝ 𝟑 = 𝜶 𝟑 =𝟎 (𝑺𝒊𝒎𝒆𝒕𝒓𝒊𝒔) 𝜶 𝟑 <𝟎 (𝑴𝒊𝒓𝒊𝒏𝒈 𝒌𝒆 𝑲𝒊𝒓𝒊) 𝜶 𝟑 >𝟎 (𝑴𝒊𝒓𝒊𝒏𝒈 𝒌𝒆 𝑲𝒂𝒏𝒂𝒏)

Data : 10,15,20,25,30,35 N=6 Q2= Q1= Q2=X3+0,5 (X4-X3)

Karena α bertanda positif,maka distribusi data miring kekanan

Tentukan derajat kemiringan dan jenisnya! Soal data berkelompok Tentukan derajat kemiringan dan jenisnya! Modal f M f.m (𝐗− 𝑿 ) 𝟐 f.(𝐗− 𝑿 ) 𝟐 40 - 46 6 43 258 47 - 53 10 50 500 73,1025 731,025 54 - 60 12 57 684 2,4025 28,83 61 - 67 2 64 128 29,7025 59,405 68 - 74 15 71 1065 155,0025 2325,0375 ∑45 ∑2635 ∑4595,1125 (𝑿− 𝑿 ) 𝟐 = (𝟒𝟑−𝟓𝟖,𝟓𝟓 ) 𝟐 =(−𝟏𝟓,𝟓𝟓 ) 𝟐 =241,8025

Maka, diperoleh hasil : 𝑿 = ∑𝐟.𝒎 ∑𝒇 = 2635 45 = 58,55 Dengan Rumus Momen 𝑿 = ∑𝐟.𝒎 ∑𝒇 = 2635 45 = 58,55 S 2 = ∑𝒇( 𝑿− 𝑿 ) 𝟐 𝒏−𝟏 = 4595,1125 44 = 104,43 S = S 2 = 𝟏𝟎𝟒,𝟒𝟑 =𝟏𝟎,𝟐𝟏𝟗

MODAL f m (m- 𝑋 ) 𝟑 f.(m− 𝑋 ) 𝟑 40 - 46 6 43 47 - 53 10 50 -625,026 -6250,26 54 - 60 12 57 -3,723 -44,676 61 - 67 2 64 161,878 323,756 68 - 74 15 71 1929,781 28946,715 ∑45 ∑415,367 = 6 (-3760,028) = -22560,168 (𝑿− 𝑿 ) 𝟑 = (𝟒𝟑−𝟓𝟖,𝟓𝟓 ) 𝟑 =(−𝟏𝟓,𝟓𝟓 ) 𝟑 =-3760,028

Karena α bertanda positif , maka distribusi data Miring ke Kanan 𝜶 𝟑 = ∑ 𝐟 𝐢 ( 𝐦 𝐢 − 𝑿 ) 𝟑 𝒏𝑺 𝟑 = 𝟒𝟏𝟓,𝟑𝟔𝟕 𝟒 𝟓(𝟏𝟎,𝟐𝟏𝟗) 𝟑 = 𝟒𝟏𝟓,𝟑𝟔𝟕 𝟒𝟓(𝟏𝟎𝟔𝟕,𝟏𝟒𝟗𝟑) = 𝟒𝟏𝟓,𝟑𝟔𝟕 𝟒𝟖𝟎𝟐𝟏,𝟕𝟏𝟖𝟓 = 0,0086

KERUNCINGAN DISTRIBUSI DATA Merupakan derajat atau ukuran tinggi rendahnya puncak suatu distribusi data terhadap distribusi normalnya data. Disebut juga Kurtosis. Ada 3 jenis keruncingan data, yaitu: Leptokurtis: Distribusi data yg puncaknya relatif tinggi. Mesokurtis: Distribusi data yg puncaknya normal. Platikurtis: Distribusi data yg puncaknya terlalu rendah atau mendatar.

GRAFIK DISTRIBUSI KERUNCINGAN Leptokurtis Mesokurtis Mod=Med=x X Mod Med x X X

GRAFIK DISTRIBUSI KERUNCINGAN Platikurtis Med Mod x

Rumus Derajat keruncingan 𝜶 𝟒 =𝟑 𝑴𝒆𝒔𝒐𝒌𝒖𝒓𝒕𝒊𝒔 𝜶 𝟒 >𝟑 (𝑳𝒆𝒑𝒕𝒐𝒌𝒖𝒓𝒕𝒊𝒔) 𝜶 𝟒 <𝟑 (𝑷𝒍𝒂𝒕𝒊𝒌𝒖𝒓𝒕𝒊𝒔) Rumus Derajat keruncingan Data TidakBerkelompok 𝜶 𝟒 = 𝟏 𝒏 𝑺 𝟒 ∑( 𝑿 𝒊 − 𝑿 ) 𝟒 𝛂 𝟒 = 𝟏 𝐧 𝐒 𝟒 ∑ 𝐟 𝐢 ( 𝐦 𝐢 − 𝐗 ) 𝟒 Data Berkelompok

Soal Data Tidak Berkelompok Tentukan Derajat Keruncingan dan jenisnya dari data berikut : 10, 12, 8, 6, 9 Data Terurut : 6, 8, 9, 10, 12

Standar deviasi diperoleh dari variansinya Maka Diperoleh : Standar deviasi diperoleh dari variansinya 𝐗 = 𝟏 𝐧 ∑ 𝐗 = 𝟏 𝟓 𝟔+𝟖+𝟗+𝟏𝟎+𝟏𝟐 = 𝟏 𝟓 { 45 } = 9 S 2 = ∑( 𝑿− 𝑿 ) 𝟐 𝒏−𝟏 = (𝟔− 𝟗) 𝟐 +(𝟖− 𝟗) 𝟐 +(𝟗− 𝟗) 𝟐 +(𝟏𝟎− 𝟗) 𝟐 +(𝟏𝟐− 𝟗) 𝟐 𝟓−𝟏 (−𝟑 ) 𝟐 +(− 𝟏) 𝟐 +( 𝟎) 𝟐 +( 𝟏) 𝟐 +( 𝟑) 𝟐 𝟓−𝟏 𝟗+𝟏+𝟎+𝟗+𝟏 𝟒 = 𝟐𝟎 𝟒 = 5

Menggunakan rumus momen StandarDeviasiS = S 2 = 𝟓 = 2,23 𝜶 𝟒 = ∑ ( 𝒙 𝐢 − 𝑿 ) 𝟒 𝒏𝑺 𝟒 = (𝟔− 𝟗) 𝟒 +(𝟖− 𝟗) 𝟒 +(𝟗− 𝟗) 𝟒 +(𝟏𝟎− 𝟗) 𝟒 +(𝟏𝟐− 𝟗) 𝟒 𝟓(𝟐,𝟐𝟑) 𝟒 = (−𝟑 ) 𝟒 +(− 𝟏) 𝟒 +( 𝟎) 𝟒 +( 𝟏) 𝟒 +( 𝟑) 𝟒 𝟓(𝟐,𝟐𝟑) 𝟒 = 𝟏𝟔𝟒 𝟏𝟔𝟑,𝟔 = 1,32 Menggunakan rumus momen Karena α < 3, maka distribusi keruncingan disebut Platikurtis

Rumus Derajat keruncingan 𝜶 𝟒 =𝟑 𝑴𝒆𝒔𝒐𝒌𝒖𝒓𝒕𝒊𝒔 𝜶 𝟒 >𝟑 (𝑳𝒆𝒑𝒕𝒐𝒌𝒖𝒓𝒕𝒊𝒔) 𝜶 𝟒 <𝟑 (𝑷𝒍𝒂𝒕𝒊𝒌𝒖𝒓𝒕𝒊𝒔) Rumus Derajat keruncingan Data TidakBerkelompok 𝜶 𝟒 = 𝟏 𝒏 𝑺 𝟒 ∑( 𝑿 𝒊 − 𝑿 ) 𝟒 𝛂 𝟒 = 𝟏 𝐧 𝐒 𝟒 ∑ 𝐟 𝐢 ( 𝐦 𝐢 − 𝐗 ) 𝟒 Data Berkelompok

Dengan menggunakan data soal kemiringan, maka diperoleh hasil : Soal data berkelompok Dengan menggunakan data soal kemiringan, maka diperoleh hasil : 𝑿 = ∑𝐟.𝒎 ∑𝒇 = 2635 45 = 58,55 S 2 = ∑𝒇( 𝑿− 𝑿 ) 𝟐 𝒏−𝟏 = 4595,1125 44 = 104,43 S = S 2 = 𝟏𝟎𝟒,𝟒𝟑 =𝟏𝟎,𝟐𝟏𝟗

MODAL f m (mi – fi(mi – 40-46 47-53 54-60 61-67 68-74 43 =(43- =(- =583468,449 = 6(583468,449) = 350810,694 47-53 10 50 5343,975 53439,75 54-60 12 57 5,772 69,264 61-67 2 64 882,238 1764,476 68-74 15 71 24025,775 360386,625 (𝑿− 𝑿 ) 𝟒 = (𝟒𝟑−𝟓𝟖,𝟓𝟓 ) 𝟒 = (−𝟏𝟓,𝟓𝟓 ) 𝟒 = 583468,449

Karena α < 3 , maka distribusi keruncingan data disebut Platikurtis 𝜶 𝟒 = ∑ 𝐟 𝐢 ( 𝐦 𝐢 − 𝑿 ) 𝟒 𝒏𝑺 𝟒 = 𝟕𝟔𝟔𝟒𝟕𝟎,𝟖𝟎𝟗 𝟒 𝟓(𝟏𝟏𝟎,𝟐𝟏𝟗) 𝟒 = 𝟕𝟔𝟔𝟒𝟕𝟎,𝟖𝟎𝟗 𝟒𝟓(𝟏𝟎𝟗𝟎𝟓,𝟏𝟗𝟗𝟎) = 𝟕𝟔𝟔𝟒𝟕𝟎,𝟖𝟎𝟗 𝟒𝟗𝟎𝟕𝟑𝟑,𝟗𝟓𝟓 = 1,561