Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan

Slides:



Advertisements
Presentasi serupa
© aSup-2007 PENGENALAN SPSS   1 INTRODUCTION to SPSS Statistical Package for Social Science.
Advertisements

PEMBENTUKAN MODEL RLB Kuliah ke 8 anareg Dosen: usman bustaman.
METODE PERAMALAN KUANTITATIF
KONSEP DAN PEMODELAN ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE)
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
© 2002 Prentice-Hall, Inc.Chap 3-1 Bab 3 Pengukuran.
Center of Young Scientists Mummy Method for Determination of 3D Irregular Body Surface Area Pasca Nadia Fitri, et. al. Pandapotan Harahap, M.Pd., M.P.Fis.
Pertemuan 02 Ukuran Numerik Deskriptif
FACILITY DESIGN NURUL UMMI, ST MT.
Bina Nusantara Model Simulasi Peretemuan 23 (Off Clas) Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
PERAMALAN Memprediksi peristiwa masa depan
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Ruang Contoh dan Peluang Pertemuan 05
1 Pertemuan 03 dan 04 Ukuran Variasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Appropriate Measures of Central Tendency Nominal variables Mode Ordinal variables Median Interval level variables Mean - If the distribution is normal.
Peramalan dan Pengelolaan Permintaan samsulb
PENGUKURAN KESALAHAN PERAMALAN
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
Pertemuan 03 Ukuran Penyimpangan (Variasi)
PERAMALAN (FORECASTING)
1 Pertemuan 1-2 Analisis Deret Waktu Matakuliah: I0224/Analisis Deret Waktu Tahun: 2007 Versi: revisi.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
DISTRIBUSI PROBABILITA KONTINU
1 Pertemuan 24 Deret Berkala, Peramalan, dan Angka Indeks-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
DERET BERKALA (TIME SERIES) (1)
2-Pembelajaran Statistik 25 Agustus 2015 Data pelatihan dan pengujian Bias dan variansi Error rate & confidence interval Regresi Linear Praktikum: Data.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
1 Pertemuan 03 Konsep Perencanaan Tag, Tag Price, Label, Casing Display Matakuliah: UO276 / Desain Komunikasi Visual III Tahun: 2006.
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
Ukuran Penyimpangan atau Disversi Pertemuan 04
METODE PENGHALUSAN EKSPONENSIAL
PERENCANAAN PERMINTAAN DALAM Supply Chain
RIZKA HADIWIYANTI, SKom,MKom
SUPPLY CHAIN MANAGEMENT (SCM)
Memahami Terminology Instrumentasi pada pengolahan migas
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
METODE-METODE PERAMALAN BISNIS
PERAMALAN Oleh: Sri Hermawati.
  At Ft2 At Ft MODUL 04 PERAMALAN (2/2)
D0052 Pengantar Teknik dan Sistem Industri
MOVING AVERAGES.
Magister Management Program UNIVERSITAS KOMPUTER INDONESIA
KOMUNIKASI DATA S. Indriani L, M.T
Peramalan “Penghalusan Eksponensial”
Pengujian Hipotesis (I) Pertemuan 11
METODA PERAMALAN KUANTITATIF
Presentasi Statistika Dasar
Peramalan Data Time Series
Parabola Parabola.
Exponential Smoothing
Naïve Method & Total Historical Average
FORECASTING.
CENTRAL TENDENCY Hartanto, SIP, MA Ilmu Hubungan Internasional
DERET BERKALA (TIME SERIES) (1)
Fungsi Kepekatan Peluang Khusus Pertemuan 10
Manajemen Proyek Perangkat Lunak (MPPL)
An Introducation to Inferential Statistics
Master data Management
Ukuran Ketepatan Peramalan Data Time Series
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Uji Korelasi dan Regresi
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
PEMODELAN MATEMATIKA Kudang B. Seminar.
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
BY : LUTFIANI RATNA DEWANTI LILIS SINARSIH Action Research.
Transcript presentasi:

Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan PERTEMUAN 13 Mieke Nurmalasari Manajemen Informasi Kesehatan

Kemampuan Akhir Yang Diharapkan Mahasiswa mampu memilih model terbaik dengan melihat ukuran akurasi model Mempelajari berbagai ukuran keakuratan model, yaitu: MAD, MAPE dan MSE

What is MAD, MAPE and MSE? Use the MAPE, MAD, and MSD statistics to compare the fits of different forecasting and smoothing methods. These statistics are not very informative by themselves, but you can use them to compare the fits obtained by using different methods. For all three measures, smaller values usually indicate a better fitting model.

Time Series Forecasting Process Look at the data (Scattr Plot) Forecast using one or more techniques Evaluate the technique and pick the best one

Evaluation of Forecasting Model BIAS - The arithmetic mean of the errors n is the number of forecast errors Excel: =AVERAGE(error range) Mean Absolute Deviation - MAD No direct Excel function to calculate MAD

Evaluation of Forecasting Model Mean Square Error - MSE Excel: =SUMSQ(error range)/COUNT(error range) Standard error is square root of MSE Mean Absolute Percentage Error - MAPE R2 - only for curve fitting model such as regression In general, the lower the error measure (BIAS, MAD, MSE) or the higher the R2, the better the forecasting model