GELOMBANG MEKANIK.

Slides:



Advertisements
Presentasi serupa
Peserta mengerti tahap-tahap pada ADC
Advertisements

KIMIA UNSUR-UNSUR TRANSISI
PERTEMUAN 3 Algoritma & Pemrograman
Penyelidikan Operasi 1. Konsep Optimisasi.
KEBIJAKAN PEMERINTAH PROVINSI JAWA TIMUR
Penyusunan Data Baseline dan Perhitungan Capaian Kegiatan Peningkatan Kualitas Permukiman Kumuh Perkotaan DIREKTORAT PENGEMBANGAN KAWASAN PERMUKIMAN DIREKTORAT.
BALTHAZAR KREUTA, SE, M.SI
PENGEMBANGAN KARIR DOSEN Disarikan dari berbagai sumber oleh:
Identitas, persamaan dan pertidaksamaan trigonometri
ANGGOTA KELOMPOK WISNU WIDHU ( ) WILDAN ANUGERAH ( )
METODE PENDUGAAN ALTERNATIF
Dosen Pengampu: Muhammad Zidny Naf’an, M.Kom
GERAK SUGIYO, SPd.M.Kom.
Uji Hipotesis Luthfina Ariyani.
SOSIALISASI PEKAN IMUNISASI NASIONAL (PIN) POLIO 2016
PENGEMBANGAN BUTIR SOAL
Uji mana yang terbaik?.
Analisis Regresi linear berganda
PEERSIAPAN DAN PENERAPAN ISO/IEC 17025:2005 OLEH: YAYAN SETIAWAN
E Penilaian Proses dan Hasil Belajar
b. Kematian (mortalitas)
Ilmu Komputasi BAGUS ADHI KUSUMA
Uji Hipotesis dengan SPSS
OVERVIEW PERUBAHAN PSAK EFFEKTIF 2015
Pengolahan Citra Berwarna
Teori Produksi & Teori Biaya Produksi
Pembangunan Ekonomi dan Pertumbuhan Ekonomi
PERSIAPAN UN MATEMATIKA
Kriptografi.
1 Bab Pembangunan Ekonomi dan Pertumbuhan Ekonomi.
Ekonomi untuk SMA/MA kelas XI Oleh: Alam S..
ANALISIS PENDAPATAN NASIONAL DALAM PEREKONOMIAN TIGA SEKTOR
Dosen: Atina Ahdika, S.Si., M.Si.
Anggaran biaya konversi
Junaidi Fakultas Ekonomi dan Bisnis Universitas Jambi
Pemodelan dan Analisis
Bab 4 Multivibrator By : M. Ramdhani.
Analisis Regresi – (Lanjutan)
Perkembangan teknologi masa kini dalam kaitannya dengan logika fazi
DISTRIBUSI PELUANG KONTINU
FETAL PHASE Embryolgy II
Yusuf Enril Fathurrohman
3D Viewing & Projection.
Sampling Pekerjaan.
Gerbang Logika Dwi Indra Oktoviandy (A )
SUGIYO Fisika II UDINUS 2014
D10K-6C01 Pengolahan Citra PCD-04 Algoritma Pengolahan Citra 1
Perpajakan di Indonesia
Bab 2 Kinerja Perusahaan dan Analisis Laporan Keuangan
Penyusunan Anggaran Bahan Baku
MOMENTUM, IMPULS, HUKUM KEKEKALAN MOMENTUM DAN TUMBUKAN
Theory of Computation 3. Math Fundamental 2: Graph, String, Logic
Strategi Tata Letak.
Theory of Computation 2. Math Fundamental 1: Set, Sequence, Function
METODE PENELITIAN.
(Skewness dan kurtosis)
Departemen Teknik Mesin dan Biosistem INSTITUT PERTANIAN BOGOR
Dasar-dasar piranti photonik
Klasifikasi Dokumen Teks Berbahasa Indonesia
Mekflu_1 Rangkaian Pipa.
Digital to Analog Conversion dan Rekonstruksi Sinyal Tujuan Belajar 1
SEKSI NERACA WILAYAH DAN ANALISIS BPS KABUPATEN TEMANGGUNG
ASPEK KEPEGAWAIAN DALAM PENILAIAN ANGKA KREDIT
RANGKAIAN DIODA TK2092 Elektronika Dasar Semester Ganjil 2015/2016
Ruang Euclides dan Ruang Vektor 1.
Bab Anuitas Aritmetrik dan Geometrik
Penyelidikan Operasi Pemrograman Dinamik Deterministik.
Kesetimbangan Fase dalam sistem sederhana (Aturan fase)
ANALISIS STRUKTUR MODAL
Transcript presentasi:

GELOMBANG MEKANIK

Sifat-sifat Gelombang Refleksi (Pemantulan) Refraksi (Pembiasan) Interferensi (Perpaduan) Polarisasi

Refleksi Reflection adalah perubahan arah muka gelombang pada antarmuka antara dua medium berbeda sehingga muka gelombang kembali ke medium asalnya.

Refleksi

Refraksi Refraction adalah perubahan arah gelombang disebabkan oleh perubahan kelajuannya. Refraksi sering terlihat bila gelombang melewati satu medium menuju medium lainnya yang memiliki perbedaan indeks bias.

Refraksi

Interferensi Interferensi adalah penjumlahan (superposition) dua atau lebih gelombang yang menghasilkan pola gelombang baru. interference biasanya mengacu pada interaksi gelombang yang koheren satu sama lain, baik disebabkan oleh sumber gelombang yang sama maupun disebabkan gelombang-gelombang tersebut memiliki frekuensi yang sama atau hampir sama.

Interferensi

Interferensi Gelombang Dua gelombang yang berjalan dapat bertemu dan saling melewati satu sama lain tanpa menjadi rusak atau berubah Gelombang memenuhi Prinsip Superposisi Jika dua gelombang atau lebih yang merambat bergerak melewati medium, gelombang yang dihasilkan adalah penjumlahan masing-masing perpindahan dari tiap gelombang pada setiap titik Sebenarnya hanya berlaku untuk gelombang dengan amplitudo yang kecil

Interferensi Konstruktif Dua gelombang, a dan b, mempunyai frekuensi dan amplitudo yang sama Berada dalam satu fase Gabungan gelombang, c, memiliki frekuensi dan amplitudo yang lebih besar

Interferensi Konstruktif pada Tali Dua pulsa gelombang menjalar dalam arah yang berlawanan Perpindahan neto ketika dua pulsa saling overlap adalah penjumlahan dari perpindahan setiap pulsa Catatan: pulsa tidak berubah setelah interferensi

Interferensi Destruktif Dua gelombang, a and b, mempunyai frekuensi dan amplitudo yang sama Perbedaan fasenya 180o Ketika bergabung, bentuk gelombangnya hilang

Interferensi Destruktif pada Tali Dua pulsa gelombang menjalar dalam arah yang berlawanan Perpindahan neto ketika dua pulsa saling overlap adalah pengurangan dari perpindahan setiap pulsa Catatan: pulsa tidak berubah setelah interferensi

Polarisasi Polarization (Brit. polarisation) is a property of waves that describes the orientation of their oscillations. For transverse waves, it describes the orientation of the oscillations in the plane perpendicular to the wave's direction of travel. Longitudinal waves such as sound waves in liquids and gases do not exhibit polarization, because for these waves the direction of oscillation is by definition along the direction of travel. Some media can carry waves with both transverse and longitudinal oscillations. Such waves do have polarization.

Gelombang Transversal Adalah gelombang berjalan dimana osilasi (arah gerak) gelombang terjadi secara tegak lurus terhadap arah gerak partikel medium (arah perpindahan energi) Jika gelombang transversal bergerak dalam arah sumbu –x, osilasi gelombang terjadi arah ke atas dan ke bawah dalam bidang y-z.

Contoh Gelombang Transversal Gelombang seismik sekunder S

Gelombang Longitudinal Adalah gelombang berjalan dimana osilasi (arah gerak) gelombang terjadi secara paralel (sejajar) terhadap arah gerak partikel medium (arah perpindahan energi)

Contoh Gelombang longitudinal Gelombang Seismik P

Persamaan Umum Gelombang Posisi gelombang

Persamaan Umum Gelombang Sebuah osilator menggetarkan seutas tali dengan frekuensi getar 200 Hz hingga membentuk gelombang transversal seperti ditunjukkan gambar. Dari keadaaan tersebut, hitunglah: panjang gelombang amplitudo perioda persamaan gelombang y (mm) x (cm) -0,1 0,1 2 4 6 8 10 12 14 16

Amplitudo Amplitudo, A, yo Amplitudo adalah posisi maksimum benda relatif terhadap posisi kesetimbangan Ketika tidak ada gaya gesekan, sebuah benda yang bergerak harmonik sederhana akan berosilasi antara ±A pada tiap sisi dari posisi kesetimbangan

Perioda dan Frekuensi Prioda, T, adalah waktu yang diperlukan untuk sebuah benda bergerak lengkap satu siklus Dari x = A ke x = - A dan kembali ke x = A Frekuensi, ƒ, jumlah lengkap siklus atau getaran per satuan waktu

Persamaan Umum Gelombang Kecepatan gelombang

Persamaan Umum Gelombang Percepatan gelombang

PERSAMAAN GELOMBANG BERJALAN

GELOMBANG v Muatan yang bergerak periodik menghasilkan perubahan medan magnet(B) dan medan listrik (E) yang menjalar kesegala arah berupa gelombang. Gelombang ini merambat tanpa memerlukan medium Gelombang adalah energi yang menjalar melalui medium GELOMBANG MEKANIK GELOMBANG ELEKTROMAGNETIK

karakteristik gelombang transversal dan longitudinal beserta contohnya GELOMBANG adalah getaran yang menjalar

ENERGI YANG BERGERAK SEDANGKAN MEDIUMNYA TIDAK Memformulasikan masalah perambatan gelombang melalui suatu medium ENERGI YANG BERGERAK SEDANGKAN MEDIUMNYA TIDAK

Berapa λ = Amplitudo = 1 m Berapa λ = Amplitudo = 0,5 m 0,3 m Jumlah gelombang = 1 λ Jumlah gelombang = ½ λ Berapa λ = Amplitudo = 0,4 m 0,1 m Jumlah gelombang = 4 λ Berapa λ = Amplitudo = 1 m Jumlah gelombang = 1½ λ

ASPEK APA YANG DI AMATI KECEPATAN GELOMBANG (V) SIMPANGAN GELOMBANG ( Y ) PANJANG GELOMBANG ( l ) FREKWENSI GELOMBANG ( f ) SUDUT FASE (q) FASE GELOMBANG

T = periode gelombang (s) λ = panjang gelombang (m) Q yP yQ λ O C B f = frekuensi (hz) T = periode gelombang (s) λ = panjang gelombang (m) v = cepat rambat gelombang (m/s) yP = simpangan titik P ( m ) yQ = simpangan titik Q ( m )

λ V = = λ . f T Y = A sin 2p /T ( t – x/v ) T.v = λ y = 2 Sin 2p{ t - x } T λ SUDUT FASE (q) = 2p /T ( t – x/v ) FASE GELOMBANG = ( t/T – x/v ) Fase gelombang merupakan bilangan pecahan diperoleh dari hasil perhitungan rumus di atas. Misal jika hasil 4,5 maka fase gelombang 0,5

FASE DAN SUDUT FASE GELOMBANG BILANGAN PECAHAN

Jumlah gelombang = Jumlah simpul = Jumlah perut/lembah = 1 3 1/1 2 5 2/2 Jumlah gelombang = Jumlah simpul = Jumlah perut/lembah = 1,5 4 2/1 Jumlah gelombang = Jumlah simpul = Jumlah perut/lembah = 2,5 6 3/2

PERCOBAAN MELDE 1) Gelombang Stasioner pada Dawai Untuk menentukan kecepatan perambatan gelombang pada dawai, Melde melakukan percobaan dengan memakai alat seperti pada gambar berikut ini.

Dari hasil percobaan Melde mendapat suatu kesimpulan sebagai berikut. a) Untuk panjang dawai yang tetap maka kcepatan perambatan gelombang berbanding terbalik dengan massa dawai. b) Untuk massa dawai tetap, cepat rambat gelombang berbanding lurus dengan akar panjang dawai. c) Cepat rambat gelombang dalam dawai berbanding lurus dengan akar tegangan dawai.

Persamaannya dapat ditulis sebagai berikut. = massa tiap satuan panjang Newton (N) dan μ dalam kg/m.

Jadi, kecepatan perambatan gelombang pada dawai adalah berbanding lurus dengan akar tegangan kawat dan berbanding terbalik dengan akar massa kawat per satuan panjang.

Contoh soal Seutas dawai yang panjangnya 1 meter dan massanya 25 gram ditegangkan dengan gaya 2,5 N. Salah satu ujungnya digetarkan sehingga terjadi gelombang stasioner. Tentukan cepat rambat gelombang tersebut

Intensitas didefinisikan sebagai energi yang dipindahkan tiap satuan luas tiap satuan waktu. Karena energi tiap satuan waktu kita ketahui sebagai pengertian daya, maka intensitas bisa dikatakan juga daya tiap satuan luas. Secara matematis : I = 𝑃 𝐴 I = Intensitas bunyi (W/m2)

A = luas penampang P = daya sumber bunyi (Energi tiap waktu atau daya (W)) Jika sumber bunyi memancarkan ke segala arah sama besar (isotropik), luas yang dimaksud sama dengan luas permukaan bola, yaitu A = 4∏R2

Sehingga I = 𝑃 4∏𝑅2 Intensitas bunyi terendah yang umumnya didengar manusia memiliki nilai 10-12 W/m2. Biasanya disebut sebagai intensitas ambang (I0). Jangkauan intensitas bunyi ini sangat lebar berkaitan dengan kuat bunyi, sehingga secara tidak langsung kuat bunyi sebanding dengan intensitasnya

Taraf Intensitas Bunyi Hubungan antara kuat bunyi dan intensitas bunyi diberikan oleh Alexander Graham Bell  Taraf Intensitas Bunyi adalah logaritma perbandingan intensitas bunyi terhadap intensitas ambang. Secara matematis, taraf intensitas bunyi didefinisikan sebagai : TI = 10 log 𝐼 𝐼𝑜

TI =Taraf intensitas bunyi (desiBell disingkat dB) I = Intensitas bunyi (W/m2) I0 =Intensitas ambang pendengaran manusia (10-12 W/m2

Untuk n buah sumber bunyi identik, misalnya ada n sirine yang dinyalakan bersama-sama, maka besarnya taraf intensitas bunyi dinyatakan sebagai : TIn = TI1 + 10 logn TI1 adalah taraf intensitas bunyi untuk satu buah sumber.

Jika didengar di dua titik yang jaraknya berbeda, besar intensitas bunyi di titik ke-2 bisa dinyatakan sebagai : 𝑇𝐼 2 = 𝑇𝐼 1 +20 𝑙𝑜𝑔 𝑟 1 𝑟 2

Seorang anak berteriak di tanah lapang, dan menghasilkan taraf intensitas 60 dB, diukur dari jarak 10 meter. Jika ada 10 orang anak berteriak dengan intensitas bunyi yang sama dan di ukur dari dan diukur dari jarak 10 meter, hitunglah taraf intensitas anak-anak tersebut.

Penyelesaian: TIn = TI1 + 10 log n = 60 dB +(10 log 10) dB = 60 dB + 10 dB = 70 dB.

Taraf intensitas bunyi sebuah air dari jarak 1 meter adalah 60 dB Taraf intensitas bunyi sebuah air dari jarak 1 meter adalah 60 dB. Tentukan taraf intensitasnya jika diamati dari jarak 10 meter. Jawab Diketahui: TI1 = 60 dB; r1 = 1 m; r2 = 10 m TI2­ = TI1 – 20 log r1/r2 = (60 dB) – 20 log (10 m/1 m) dB = (60 dB) - (20 dB) = 40 dB

Batas intensitas bunyi yang bisa didengar telinga manusia normal antara lain sebagai berikut: 1)  Intensitas terkecil yang masih dapat menimbulkan rangsangan pendengaran pada telinga manusia adalah sebesar 10-12Wm-2pada frekuensi 1.000 Hz dan disebut intensitas ambang Pendengaran.

2)  Intensitas terbesar yang masih dapat diterima telinga manusia tanpa rasa sakit adalah sebesar 1 Wm-2. Jadi, batasan pendengaran terendah pada manusia adalah 10-12 Wm-2 dan batasan pendengaran tertinggi pada manusia adalah 1 Wm-2