Analisis Variansi.

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis (Satu Sampel)
Advertisements

Distribusi Chi Kuadrat, t dan F
Analisis Variansi.
1 Analisis Variansi Statistika I (Inferensi) Ch. Enny Murwaningtyas 31 Maret 2009.
Analisis Variansi Satu Arah
ANALISIS VARIANSI (ANOVA)
ANOVA DUA ARAH.
Analisis Variansi.
ANOVA DUA ARAH.
ANALISIS VARIANSI.
Praktikum Statistika Pertemuan 8
Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Statistika Inferensi : Estimasi Titik & Estimasi Interval
UJI HOMOGINITAS VARIANS
ANOVA Dr. Srikandi Kumadji, MS.
STATISTIKA 1 Jurusan Ekonomi Syariah IAIN Antasari Banjarmasin Disampaikan oleh Hafiez Sofyani, SE., M.Sc. Pertemuan 8: ANALYSIS OF VARIANCE (ANOVA) KEGUNAAN.
Percobaan satu faktor (single factor exp.)
Analisis Peragam (Kovarians) pada RAK
METODE STATISTIKA II Analysis of Variance Met Stat 2
ANALISIS RAGAM (VARIANS)
UJI HIPOTESIS.
Uji Mann-Whitney (U - Test) KELOMPOK 10 ELSA RESA SARI(H ) PUJI PUSPA SARI(H ) SARINA(H )
oleh: Hutomo Atman Maulana, S.Pd. M.Si
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
Kuliah ke 9 ESTIMASI PARAMETER SATU POPULASI
Bio Statistika Jurusan Biologi 2014
ANALISIS VARIANSI (ANOVA)
ANOVA (Analysis of Variance)
Misal sampel I : x1, x2, …. Xn1 ukuran sampel n1
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA)
STATISTIK INFERENSIAL
Same Subject Design Definisi :
RANCANGAN ACAK LENGKAP (RAL) COMPLETTED RANDOMIZED DESIGN (CRD)
Analisis Variansi.
ANALISIS VARIANSI (ANOVA)
STATISTIK INDUSTRI.
Analisis Variansi Part 1 & 2 – Tita Talitha, MT.
MODUL X Kn Kn  ( Xij X ) = [( Xi. X ..) [( Xij X )
Regresi Linier Berganda
RAL (Rancangan Acak Lengkap)
Rancangan Acak Lengkap (RAL) (Completely Randomized Design)
PERBEDAAN NILAI RATA-RATA UNTUK LEBIH DARI DUA POPULASI
UJI F/UJI RAGAM (ANOVA)
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER
Regresi Linier Berganda
KRUSKAL-WALLIS.
SEBARAN DARI FUNGSI PEUBAH ACAK
ANALISA VARIANS DENGAN 2 KLASIFIKASI (two way anova)
PENDAHULUAN Dalam kehidupan sering ditemukan adanya sekelompok peubah yang diantaranya terdapat hubungan alamiah, misalnya panjang dan berat bayi yang.
Pertemuan 21 Penerapan model not full rank
Materi Pokok 21 RANCANGAN KELOMPOK
ANALISIS COMPARE MEANS
Analisis Variansi.
Contoh1 : REGRESI LINIER
Contoh1 : REGRESI LINIER
Analisis Variansi Kuliah 13.
Regresi Linier Berganda
ANALYSIS OF VARIANCE (ANOVA)
Analisis Variansi.
Percobaan satu faktor (single factor exp.)
Distribusi t Untuk sampel ukuran , taksiran yang baik dapat diperoleh dengan menggunakan . Bila memberikan taksiran.
BAB 1 ANALISIS VARIANSI / KERAGAMAN Analysis of Variance ( ANOVA )
Analisis Variansi Kuliah 13.
Pertemuan ke 12.
2.4. Kruskal-Walls Test. Uji Kruskal-Wallis dikenal juga dengan Analisa Varian (ANOVA) untuk data berperingkat (ordinal), dimana nilai pengamatan diberikan.
.ANALISIS VARIAN.. 1. ANALISIS ANVARIAN Analisis varians (analysis of variance, ANOVA) adalah suatu metode analisis statistika yang termasuk ke dalam.
ANOVA (Analysis of Variance)
Analisis Variansi.
ANALISIS VARIANSI (AnaVa)
Analisis Variansi.
Transcript presentasi:

Analisis Variansi

Analisis Variansi Analisis variansi (ANOVA) adalah suatu metoda untuk menguji hipotesis kesamaan rata-rata dari tiga atau lebih populasi. Asumsi Sampel diambil secara random dan saling bebas (independen) Populasi berdistribusi Normal Populasi mempunyai kesamaan variansi

Analisis Variansi Misalkan kita mempunyai k populasi. Dari masing-masing populasi diambil sampel berukuran n. Misalkan pula bahwa k populasi itu bebas dan berdistribusi normal dengan rata-rata 1, 2, …, k dan variansi 2. Hipotesa : H0 : 1 = 2 = … = k H1 : Ada rata-rata yang tidak sama

Penyelesaian Hipotesa : H0: 1 = 2 = 3 H1: Ada rata-rata yang tidak sama Tingkat signifikasi  = 0.05 H0 ditolak jika nilai-p < .

Analisis Variansi Populasi Total 1 2 … i k x11 x21 xi1 Xk1 x12 x22 xi2 : x1n x2n xin xkn T1 T2 Ti Tk T Ti adalah total semua pengamatan dari populasi ke-i T adalah total semua pengamatan dari semua populasi

Rumus Hitung Jumlah Kuadrat Untuk ukuran sampel yang berbeda Jumlah Kuadrat Total = Jumlah Kuadrat Perlakuan = Jumlah Kuadrat Galat =

Tabel Anova Untuk ukuran sampel yang berbeda Sumber Variasi Derajat bebas Jumlah kuadrat Kuadrat Rata-rata Statistik F Perlakuan k – 1 JKP KRP = JKP/(k – 1 ) F = KRP/KRG Galat N – k JKG KRG = JKG/(N - k) Total N – 1 JKT

Contoh 2 Metode A B C D 70 65 76 67 87 66 77 74 78 50 57 68 89 Seorang guru SMA mengadakan penelitian tentang keunggulan metode mengajar dengan beberapa metode pengajaran. Bila data yang didapat seperti pada tabel di samping, apakah keempat metode mengajar tersebut memiliki hasil yang sama?

Penyelesaian Hipotesa : H0: 1 = 2 = 3= 4 H1: Ada rata-rata yang tidak sama Tingkat signifikasi  = 0.05 H0 ditolak jika nilai-p < .

Hasil Output SPSS Karena nilai-p = 0,006 <  = 0,05 maka H0 ditolak sehingga ada rata-rata yang berbeda. Untuk mencari mana rata-rata yang berbeda digunakan analisis pasca anova (post hoc test).

Hasil output SPSS Dengan menggunakan  = 5 % maka metode A dan metode D berbeda secara signifikan (nilai-p = 0,015), metode C dan metode D berbeda secara signifikan (nilai-p = 0,012).

Hasil output SPSS

TERIMA KASIH