Diferensial Fungsi Majemuk

Slides:



Advertisements
Presentasi serupa
DIFERENSIAL FUNGSI SEDERHANA (ORDINARY DIFFERENTIAL)
Advertisements

LABOR MARKET Kuliah 12. THE LABOR MARKET..1  When firms respond to an increase in demand by stepping up production : Higher production requires an increase.
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Diferensial Fungsi Majemuk
Relation
Game Theory Purdianta, ST., MT..
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
TEKNIK PENGINTEGRALAN
Diferensial Fungsi Majemuk
Edge Detection (Pendeteksian Tepi)
TURUNAN DALAM RUANG BERDIMENSI n
WaterfallPrototyping RAD Incremental Prototyping Pendekatan SDLC.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI

TURUNAN PARSIAL MATERI KALKULUS I.
 1. Explaining the definition of linear equation with one variable.  2. Explaining the characteristics of linear equation with one variable. 3. Determining.
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
Modul VI Oleh: Doni Barata, S.Si.
Diferensial Parsial Pertemuan 7
Matakuliah : J0182/ Matematika II Tahun : 2006
Diferensial Fungsi Majemuk Pertemuan 20 Matakuliah: J0174/Matematika I Tahun: 2008.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
NON-LINIER OPTIMIZATION
Comparative Statics Slutsky Equation
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
INTEGRAL Pertemuan ke-13.
Persamaan Diverensial
CHAPTER 4 TOPIK DALAM TEORI FUNGSI Rolando Danao Rolando Danao.
LIMIT FUNGSI LIMIT FUNGSI ALJABAR.
Pertemuan 23 Diferensial Parsial.
Statistika Chapter 4 Probability.
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Diferensial Fungsi Majemuk
DERIVATIF PARSIAL YULVI ZAIKA Free Powerpoint Templates.
Pertemuan 24 Teknik Searching
Two-and Three-Dimentional Motion (Kinematic)
1.Derivatif Fungsi dua Perubah
Pendugaan Parameter (II) Pertemuan 10
Persamaan dalam dimensi n = f(x,y) = 3x2 + 2y2 –xy -4x – 7y+12 34y
KURVA INDIFFERENCE II.
FACTORING ALGEBRAIC EXPRESSIONS
Matematika Pertemuan 16 Matakuliah : D0024/Matematika Industri II
INTEGRAL TAK TENTU Definition
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
KURVA INDIFFERENCE II.
6. APLIKASI PRINSIP EKONOMI DALAM BISNIS; PRODUKSI
Optimisasi: Fungsi dengan Dua Variabel
Diferensial Fungsi Majemuk
Copyright © Cengage Learning. All rights reserved.
Diferensial Fungsi Majemuk
Diferensial Fungsi Majemuk
Menentukan Maksimum atau Minimum suatu fungsi
Diferensial Fungsi Majemuk
Differensial.
Limit dan Differensial
Penggunaan Diferensial Parsial (2)
Al Muizzuddin F Matematika Ekonomi Lanjutan
Derivatif Parsial (Fungsi Multivariat) week 11
Diferensial Fungsi Majemuk
Turunan Parsial Definisi: Misalkan f(x,y) adalah fungsi dua peubah x dan y. 1. Turunan parsial pertama dari f terhadap x (y dianggap konstan) didefinisikan.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
BAB 9 TEORI PRODUKSI. 2 Introduction Our focus is the supply side. The theory of the firm will address: How a firm makes cost-minimizing production decisions.
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
HANDLING RUSH PRESIDENT UNIVERSITY NURLAELA RIZKINA.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Diferensial Fungsi Majemuk Diferensial Parsial Diferensial Total Chain rule dll

Diferensial Parsial Diferensial Total

High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan lebih dari satu kali Turunan parsial z = f (x,y)  kalau kontinyu dapat mempunyai turunannya sendiri.  empat turunan parsial : Dapat dilambangkan fxx, fxy, fyx, dan fyy fxy = fyx

Partial derivatives Cobb-Douglas production function (+=1) Q = 96K0.3 L0.7

Techniques of partial differentiation Market model Techniques of partial differentiation

Geometric interpretation of partial derivatives Market model Geometric interpretation of partial derivatives

Market model

Q S D P D1 Q S1 D P S0

Q S0 D P S1 Q S0 D1 D0 P Q0 Q1 Market model

National-income model Y = C + I0 + G0 C = a + b(Y-T); b = MPC (a > 0; 0 < b < 1) T=d+tY; t = MPT (d > 0; 0 < t < 1) Y=( a-bd+I+G)/(1-b+tb) C=(b(1-t)(I+G)+a-bd)/ (1-b+tb) T=(t(I+G)+ta+d(1-b))/ (1-b+tb) National-income model

Input-output model ∂x1/∂d1 = b11

Note on Jacobian Determinants Use Jacobian determinants to test the existence of functional dependence between the functions /J/ Not limited to linear functions as /A/ (special case of /J/ If /J/ = 0 then the non-linear or linear functions are dependent and a solution does not exist. Note on Jacobian Determinants

Total Differentials

Diferensial Total

Let Utility function U = U (x1, x2, …, xn) Differentiation of U wrt x1..n U/ xi is the marginal utility of the good xi dxi is the change in consumption of good xi

Finding the total derivative from the differential Given a function y = f (x1, x2, …, xn) Total differential dy is: Total derivative of y with respect to x2 found by dividing both sides by dx2 (partial total derivative) Finding the total derivative from the differential

Chain rule (kaidah rantai) This is a case of two or more differentiable functions, in which each has a distinct independent variable. where z = f(g(x)), i.e., z = f(y), i.e., z is a function of variable y and y = g(x), i.e., y is a function of variable x If R = f(Q) and if Q = g(L)

z x y Kaidah Rantai t Pohon rantai

Kaidah Rantai Kalau w = w(x,y,z) dan x = x(u,v), y = y(u,v), dan z = z(u,v), maka pohon rantai : w y v z u x

Kalau z = z(x,y), dan x = x(s), y = y(s), dan s = s(u,v), maka pohon rantai menjadi :