DISTRIBUSI FREKUENSI.

Slides:



Advertisements
Presentasi serupa
STATISTIKA kelas XI/I PENYAJIAN DATA Sri Wahyuni ( )
Advertisements

DISTRIBUSI FREKUENSI Drs. Setiadi C.P., M.Pd., M.T.
DISTRIBUSI FREKUENSI.
DAFTAR DISTRIBUSI FREKUENSI
UNIVERSITAS MUHAMMADIYAH SURAKARTA
DISTRIBUSI FREQUENSI Definisi: Susunan data menurut besarnya atau menurut katagorinya MEMBUAT TABEL DISTRIBUSI FREQUENSI Contoh: Terdapat data berat badan.
BAB 2 PENYAJIAN DATA.
1. Statistika dan Statistik
Bab 1 Distribusi Frekuensi.
DISTRIBUSI FREKUENSI (Grafik dari Tabel Frekuensi) (Pertemuan ke-4)
Distribusi Frekuensi Pokok Bahasan ke-3.
PENYAJIAN DATA SPECIAL FOR XII TR 2.
Penyelesaian : 1. Membuat data terurut
02 Juni 2017by Maifalinda Fatra Penyajian Data dalam Bentuk Tabel (Pertemuan Kedua) Oleh: Maifalinda Fatra, M.Pd.
Statistika Dasar Khaola Rachma Adzima
K-3 STATISTIK , PETERNAKAN UMBY Kelas pagi Gejayan (Kampus 2)
DISTRIBUSI FREKUENSI.
Distribusi Frekuensi & Grafiknya
ENDRA YUAFANEDI ARIFIANTO
BAB 3 DISTRIBUSI FREKUENSI
Statistika Media Pembelajaran Matematika SMA Kelas XI IPA Semester 1
PENYAJIAN DATA DATA YANG DIKUMPULKAN TIDAK AKAN BANYAK BERMAKNA APABILA TIDAK DISAJIKAN DENGAN BAIK. DATA UMUMNYA DISAJIKAN DALAM BENTUK TABEL SEPERTI.
Pengantar PENYAJIAN DATA
Pertemuan III: Penyajian Data (jilid 2)
STATISTIK PENYAJIAN DATA.
BAB 2 PENYAJIAN DATA.
DISTRIBUSI FREKUENSI DAN PENYAJIAN DATA
Distribusi Frekuensi Materi 3.
Penyusunan dan penyajian data
DISTRIBUSI FREKUENSI.
KIMIA ANALISIS Konsep Statistika.
BAB 2 DISTRIBUSI FREKUENSI Distribusi frekuensi adalah tabel tentang kelompok data yang terdiri dari kolom kelas dan kolom frekuensi.
DISTRIBUSI FREKUENSI.
NOTASI SIGMA Maka:.
PENYAJIAN DATA.
STATISTIKA PENGERTIAN STATISTIK.
BIO STATISTIKA JURUSAN BIOLOGI
BAB 2 PENYAJIAN DATA.
BAB IV DISTRIBUSI FREKUENSI.
Pengantar statistika sosial
Resista Vikaliana, S.Si. MM
Membuat Data Menjadi Informasi untuk Pengambilan Keputusan Manajerial
Widita Kurniasari, SE, ME
DISTRIBUSI FREKUENSI.
STATISTIK PENYAJIAN DATA.
PERTEMUAN III Penyajian Data Berkelompok
Distribusi Frekuensi Materi 3.
PENYAJIAN DATA Firmansyah, S.Kom..
DISTRIBUSI FREKUENSI.
DISTRIBUSI FREKUENSI.
Distribusi Frekuensi Materi 3.
Oleh : Jaka Wijaya Kusuma M.Pd
BAB 2 PENYAJIAN DATA.
DISTRIBUSI FREQUENSI Definisi: Susunan data menurut besarnya atau menurut katagorinya MEMBUAT TABEL DISTRIBUSI FREQUENSI Contoh: Terdapat data berat badan.
DISTRIBUSI FREKUENSI.
DISTRIBUSI FREKUENSI Hasan Mukhibad.
Statistik PENYAJIAN DATA.
DISTRIBUSI FREKUENSI   DISTRIBUSI FREKUENSI ADALAH TABEL FREKUENSI YANG MENGELOMPOKKAN DATA YANG BELUM TERKELOMPOK KE DALAM KELAS - KELAS SEHINGGA MENJADI.
Penataan dapat dilakukan dalam bentuk:
Statistika PENYAJIAN DATA.
DISTRIBUSI FREKUENSI.
BAB 2 penyajian statistik
Pertemuan ke 2.
STATISTIK DESKRIPTIF.
BAB 2 PENYAJIAN DATA.
DISTRIBUSI FREKUENSI.
Distribusi Frekuensi Materi 3.
Pertemuan 3 Distribusi Frequensi
NOTASI SIGMA Maka:.
DISTRIBUSI FREKUENSI.
Transcript presentasi:

DISTRIBUSI FREKUENSI

Pengertian Distribusi Frekuensi Upaya menyusun urutan data ke dalam kelas-kelas interval, untuk kemudian ditentukan jumlah (frekuensinya), berdasarkan data yang sesuai dengan batas-batas interval kelasnya

Tahapan Penyusunan Data Dalam Bentuk Daftar Distribusi Frekuensi Pastikan jumlah data yang terhimpun seakurat mungkin Perhatikan data tertinggi dan data terendah dari himpunan data tersebut Tetapkan jarak (range) dari himpunan data yang ada J = Xmaks – Xmin (data terbesar – data terkecil) Merencanakan jumlah kelas (banyak kelas) yang akan digunakan dalam daftar distribusi frekuensi b = 1+3,3 log n Menentukan panjang kelas (P) pada tiap interval kelas dari daftar tersebut P= J/b

Contoh Soal Terdapat Himpunan data usia produktif sebagai berikut: 20, 22, 25, 32, 18, 24, 14, 30, 29, 28, 30, 26, 31 Maka tentukan banyaknya kelas dan panjang kelas! b = 1 + 3,3 log (13) b = 1 + 3,3 x (1,11) = 4,676 ≈ 5 P = (32-14)/4,676 = 3,849 ≈ 4 interval kelas frekuensi 14-17 1 18-21 2 22-25 3 26-29 30-33 4 Jumlah 13

Macam Distribusi Frekuensi 1. Distribusi frekuensi relatif Daftar distribusi frekuensi yang dinyatakan dalam bentuk relatif (persentase). Frekuensi data yang terdapat dalam setiap interval kelas dinyatakan dalam bentuk persen. NILAI MATA KULIAH STATISTIKA PADA PTS "X“ TAHUN 2012 NILAI FREKUENSI FREKUENSI RELATIF 21 - 30 12 12/125 X 100% = 9,6% 31 - 40 10 10/125 X 100% = 8% 41 - 50 15 15/125 X 100% = 12% 51 - 60 22 22/125 X 100% = 17,6% 61 - 70 8 8/125 X 100% = 6,4% 71 - 80 30 30/125 X 100% = 24% 81 - 90 25 25/125 X 100% = 20% 91 - 100 3 3/125 X 100% = 2,4% Jumlah 125 100,00%

NILAI MATA KULIAH STATISTIKA PADA PTS "X" TAHUN 2012 2. Distribusi frekuensi kumulatif Penyajian data dalam bentuk daftar distribusi frekuensi dengan cara melakukan penjumlahan frekuensi dalam frekuensi. Dibagi menjadi dua yaitu: distribusi frekuensi kumulatif kurang dari dan distribusi frekuensi kumulatif lebih dari NILAI MATA KULIAH STATISTIKA PADA PTS "X" TAHUN 2012 NILAI KURANG DARI FREKUENSI KUMULATIF Kurang dari 21 Kurang dari 31 12 Kurang dari 41 22 Kurang dari 51 37 Kurang dari 61 59 Kurang dari 71 67 Kurang dari 81 97 Kurang dari 91 122 Kurang dari 100 125

Lanjutan Distribusi frekuensi kumulatif Contoh Distribusi frekuensi lebih dari NILAI MATA KULIAH STATISTIKA PADA PTS "X" TAHUN 2012 NILAI ATAU LEBIH FREKUENSI KUMULATIF 21 atau lebih 125 31 atau lebih 113 41 atau lebih 103 51 atau lebih 98 61 atau lebih 66 71 atau lebih 58 81 atau lebih 28 91 atau lebih 3 100 atau lebih

NILAI MATA KULIAH STATISTIKA PADA PTS "X“ TAHUN 2012 3. Distribusi frekuensi terbuka Distribusi frekuensi yang digunakan untuk menyatakan suatu kondisi yang dianggap tidak perlu menyatakan batas terendah dan/atau batas tertingginya, sehingga hal tersebut secara umum dinyatakan bahwa interval kelasnya bersifat terbuka Ada 3 macam distribusi frekuensi terbuka: Distribusi frekuensi yang terbuka di atas NILAI MATA KULIAH STATISTIKA PADA PTS "X“ TAHUN 2012 NILAI FREKUENSI Kurang dari 30 12 31 - 40 10 41 - 50 15 51 - 60 22 61 - 70 8 71 - 80 30 81 - 90 25 91 - 100 3 Jumlah 125

2. Distribusi frekuensi terbuka di bawah Daftar distribusi frekuensi dengan tidak mencantumkan berapa nilai dari ujung atas interval kelas terakhirnya, hanya dinyatakan dengan “atau lebih “ pada interval kelas terakhirnya NILAI MATA KULIAH STATISTIKA PADA PTS "X" TAHUN 2012 NILAI FREKUENSI 21 - 30 12 31 - 40 10 41 - 50 15 51 - 60 22 61 - 70 8 71 - 80 30 81 - 90 25 91 atau lebih 3 Jumlah 125

NILAI MATA KULIAH STATISTIKA PADA PTS "X“ TAHUN 2012 3. Distribusi frekuensi terbuka keduanya (terbuka di atas dan terbuka di bawah) Daftar distribusi frekuensi yang tidak mencantumkan berapa nilai dari ujung bawah kelas interval pertamanya dan berapa nilai dari ujung atas kelas interval terakhirnya (hanya dinyatakan dengan pernyataan atau lebih pada interval kelas terakhir) NILAI MATA KULIAH STATISTIKA PADA PTS "X“ TAHUN 2012 NILAI FREKUENSI Kurang dari 30 12 31 - 40 10 41 - 50 15 51 - 60 22 61 - 70 8 71 - 80 30 81 - 90 25 91 atau lebih 3 Jumlah 125

4. Histogram Model penyajian data dalam bentuk diagram batang 4. Histogram Model penyajian data dalam bentuk diagram batang. Diagram ini dibentuk berdasarkan data yang terdapat pada daftar distribusi frekuensi, dengan ketentuan garis horisontal (mendatar) digunakan untuk tempat kedudukan batas bawah dan batas atas dari interval-interval kelas pada daftar dimaksud, sedangkan garis vertikal digunakan tempat kedudukan dari frekuensinya. 5. Poligon Frekuensi Model penyajian data dalam bentuk diagram garis, diagram garis ini dibentuk dengan cara menghubungkan titik-titik tengah tepat pada puncak histogram

NILAI KELULUSAN MATA KULIAH STATISTIKA Contoh: NILAI KELULUSAN MATA KULIAH STATISTIKA NILAI FREKUENSI 31 - 40 5 41 - 50 8 51 - 60 12 61 - 70 24 71 - 80 11 81 - 90 9 91 - 100 6 Jumlah 75

Histogram NILAI KELULUSAN MATA KULIAH STATISTIKA Frekuensi Interval kelas

TERIMA KASIH