ESTIMASI DAN KEPUTUSAN STATISTIK (HIPOTESIS) Materi MK Biostatistik Kesling
Estimasi Jenis estimasi : Estimasi nilai proporsi () : = p z(1-/2) {p(1-p)}/n p : proporsi dari keberhasilan-keberhasilan dalam sampel (n) Penggunaan faktor koreksi : bila perbandingan antara jumlah sampel dengan jumlah populasi (n/N) > 0,05 maka harus dikalikan dengan faktor koreksi : (N-n)/(N-1)
Estimasi Contoh soal : Suatu populasi siswa SMU sebanyak 1500 siswa, dilakukan pengambilan sampel sejumlah 100 siswa, yang dilakukan pengukuran ternyata rata-rata berat badan = 56 kg. Penelitian terdahulu diketahui simpangan baku berat badan populasi = 12 kg. Lakukan penaksiran interval pada tingkat kepercayaan 95%!
Estimasi Jawaban: Perbandingan sampel dengan populasi : n/N 100/1500 = 0,06 (faktor koreksi) Estimasi yang digunakan adalah estimasi nilai rata-rata dengan diketahui : n = 100 N = 1500 = 12 x = 56 nilai Z untuk 95% = 1,96
Estimasi Jawaban: = x z(1-/2) (/n) (N-n)/(N-1) = 56 1,96(12/ 100) (1500-100)/(1500-1) = 56 2,27 Jadi estimasi nilai rata-rata intervalnya = 53,73 < < 58,27
Estimasi Contoh soal : Suatu penelitian ingin menaksir prosentase DRM yang tidak lengkap berjumlah 1800 dokumen dengan diambil sampel sebanyak 70 dokumen, ternyata ketidaklengkapannya mencapai 15 %. Taksirlah ketidaklengkapan dokumen pada tingkat kepercayaan 90% (Z = 1,645)
Estimasi Jawaban: Estimasi yang dicari adalah estimasi proporsi Diketahui : n = 70 N = 1800 p = 0,15 1 – p = 0,85 nilai Z dengan 90% CI = 1,645
Estimasi Jawaban: n/N = 70/1800 = 0,04 (tidak perlu faktor koreksi) = p z(1-/2) {p(1-p)}/n = 0,15 1,645 {0,15(0,85)}/70 =
Konsep Dasar Hipotesis Keputusan statistik asumsi / dugaan Hipotesis Statistik = pernyataan statistik mengenai parameter atau distribusi probabilitas dari populasi (uji statistik)
Thesis = Pernyataan atau Teori Hipotesis Hipo = sementara atau lemah kebenarannya Thesis = Pernyataan atau Teori Hipotesis = pernyataan sementara yang perlu diuji kebenaraannya
Jenis Hipotesis Hipotesis nol (Ho) : = Hipotesis statistik = Hipotesis yang sifat status quo (menyangkal) – kalimat negatif “ hipotesis yang menyatakan tidak ada hubungan antara satu variabel dengan variabel lain” atau “ hipotesis yang menyatakan tidak ada perbedaan suatu kejadian (mean, proporsi) antara 2 kelompok atau lebih”
Jenis Hipotesis Hipotesis nol (Ho) : Pola: - Tidak ada hubungan antara...dengan..... - Tidak ada perbedaan antara...dengan... “Tidak ada hubungan antara frekuensi merokok dengan kejadian BBLR” “Tidak ada perbedaan BBLR antara ibu merokok dengan ibu tidak merokok”
Jenis Hipotesis 2. Hipotesis alternatif (Ha/ H1): = Hipotesis penelitian = Hipotesis kerja (tidak menyangkal)- kalimat positif Pola : - Ada hubungan antara...dengan... - Ada perbedaaan antara...dengan... - Jika...maka... - Semakin...maka akan semakin....
Jenis Hipotesis 2. Hipotesis alternatif (Ha/ H1): contoh : - Ada hubungan antara kadar Hb siswa SD dengan kemampuan akademik - Ada perbedaan pengetahuan antara kelompok pendidikan rendah dengan kelompok pendidikan tinggi - Jika pendapatan naik maka status gizi akan naik - Semakin tinggi IP yang didapat maka akan semakin banyak mata kuliah yang diambil
Bentuk Hipotesis (berdasarkan arah) 1. Hipotesis satu arah / one tail/ satu sisi : = hipotesis yang dinyatakan dengan jelas antara hubungan atau perbedaan nilai/ tingkat ( Ho : , ) “Bila umur bertambah tua maka frekuensi sakit semakin besar” “ BBLR bayi pada ibu merokok lebih kecil dari BBLR bayi pada ibu tidak merokok”
Bentuk Hipotesis (berdasarkan arah) 2. Hipotesis dua arah / two tailed/ dua sisi : = Hipotesis yang dinyatakan dengan tidak ada arah hubungan atau tidak ada perbedaan nilai/ tingkat (Ho : =) - “ Ada hubungan antara umur dengan frekuensi sakit” - “Ada perbedaan status gizi antara siswa laki- laki dengan siswa perempuan”
Pengujian Hipotesis Uji statistik yang diuji Ho Hasil Pengujian Hipotesis (Keputusan statistik) : Menolak Ho (Ho ditolak) maka keputusan = menerima Ha (hipotesis penelitian terbukti benar) Gagal menolak Ho (Ha ditolak) maka keputusan = menerima Ho (hipotesis penelitian tidak terbukti kebenarannya)
Kesalahan Pengambilan Keputusan Kesalahan Tipe I () : = kesalahan menolak hipotesis nol padahal hipotesis nol adalah benar = tingkat signifikansi/ kemaknaan = taraf kesalahan = taraf nyata/ probability = p-value = Significance level = besarnya risiko kesalahan yang harus ditanggung oleh peneliti untuk menolak Ho ketika Ho benar
Kesalahan Pengambilan Keputusan Kesalahan Tipe I () : - peluang tidak membuat kesalahan = 1- = Tingkat kepercayaan = Confidence level Menentukan tingkat kemaknaan () = batas maksimal kita salah menyatakan hubungan atau perbedaan
Menentukan nilai Besarnya nilai tergantung tujuan dan kondisi penelitian : = 0,1 (tingkat kepercayaan 90%) = 0,05 (tingkat kepercayaan 95%) penelitian kesehatan masyarakat = 0,01 (tingkat kepercayaan 99%) penelitian yang mengandung risiko besar
Kesalahan Pengambilan Keputusan Kesalahan Tipe 2 () = = menerima Ho padahal hipotesis null adalah salah Hipotesis dapat dibuat berdasarkan : - teori - pengalaman - ketajaman berpikir
Kesalahan Pengambilan Keputusan Jenis kesalahan : Situasi Ho Benar Salah Keputusan Terima Ho Keputusan tepat (1-) Kesalahan tipe 2 () Tolak Ho Kesalahan tipe 1 () Keputusan tepat (1-)
Prosedur Uji Hipotesis Menetapkan hipotesis : - Ho = .........................? - Ha = .........................? 2. Menentukan uji statistik yang sesuai 3. Menentukan tingkat kemaknaan () 4. Perhitungan statistik 5. Kesimpulan uji statistik
Contoh Pengambilan Keputusan Suatu eksperimen pada pupuk A diberikan pada 100 pohon mangga dan setelah sebulan ternyata 50 dari pohon tersebut tidak menunjukkan reaksi dari pemupukan itu. Kemudian diberikan pupuk B pada 100 pohon mangga lainnya ternyata hanya 40 pohon yang tidak menunjukkan reaksi (tidak berbuah)
Contoh Pengambilan Keputusan Berdasarkan pernyataan tersebut biasanya orang menarik kesimpulan/ keputusan bahwa pupuk A tidak efektif dibandingkan pupuk B, kecuali lebih dari 50 pohon telah berbuah Maka muncul pertanyaan : berapakah jumlah pohon yang berbuah untuk menyatakan bahwa pupuk A lebih efektif dari pupuk B?
Contoh Pengambilan Keputusan Dengan metode statistik belum bisa menjawab secara tepat atau membuat kesimpulan yang benar kecuali kesimpulan yang dianggap agak benar, karena kemungkinan terdapat kesalahan. Setiap pengambilan keputusan ada kemungkinan kesalahan
Contoh Pengambilan Keputusan Misal : 75 pohon dari 100 pohon mangga berbuah dengan pemberian pupuk A, maka peneliti dihadapkan pada 2 keputusan : 1. Pupuk A, ternyata tidak lebih baik dari pupuk B meski 75 pohonnya berbuah, karena mungkin saja hanya disebabkan kebetulan semata. Peneliti percaya bahwa pupuk A tidak lebih baik dari pupuk B meskipun 75 dari 100 pohon berbuah (kesalahan tipe 1)
Contoh Pengambilan Keputusan Misal : 75 pohon dari 100 pohon mangga berbuah dengan pemberian pupuk A, maka peneliti dihadapkan pada 2 keputusan : 2. Walaupun peneliti percaya bahwa 75 pohon dari 100 pohon telah berbuah sebagai reaksi dari pupuk A hanya suatu kebetulan saja, kiranya peneliti percaya bahwa pupuk A lebih efektif daripada pupuk B. (kesalahan tipe 2)