PENYEBARAN DATA Tujuan Belajar :

Slides:



Advertisements
Presentasi serupa
STATISTIKA DESKRIPTIF
Advertisements

Resista Vikaliana, S.Si. MM
UKURAN DISPERSI (PENYEBARAN DATA)
Mari Kita Lihat Video Berikut ini.
LATIHAN SOAL DATA TUNGGAL
STATISTIKA CHATPER 4b (Ukuran Nilai Letak)
STATISTIK - I.
Oleh Widiyastuti,S.Pd, M.Eng SMA N 3 BOYOLALI
UKURAN PENYEBARAN DATA
Ukuran Pemusatan (Central Tendency)
Ukuran Pemusatan dan Ukuran Penyebaran
DESKRIPSI DATA Pertemuan 9 1. Pendahuluan : Sering digunakan peneliti, khususnya dalam memperhatikan perilaku data dan penentuan dugaan-dugaan yang selanjutnya.
UKURAN DISPERSI (PENYEBARAN DATA)
Peringkasan Data (Pemusatan dan Penyebaran)
Pengujian Hypotesis - 3 Tujuan Pembelajaran :
PENGUKURAN PENYEBARAN DATA
NILAI RATA-RATA (CENTRAL TENDENCY)
Pengukuran VARIABILITAS
Ukuran Variasi atau Dispersi
ESTIMASI (PENDUGAAN) Mugi Wahidin, M.Epid Prodi Kesehatan masyarakat
Teknik Numeris (Numerical Technique)
UKURAN PEMUSATAN DAN LETAK DATA
Ukuran Variasi atau Dispersi
BAB VI UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi) (Pertemuan ke-8) Oleh: Andri Wijaya, S.Pd., S.Psi., M.T.I. Program Studi Sistem Informasi Sekolah.
Ukuran Penyimpangan (Dispersi)
MATA KULIAH STATISTIK DESKRIPSI
UKURAN KERAGAMAN/ DISPERSI
HOMOGEN DAN HETEROGEN DATA
UKURAN PENYEBARAN (DISPERSI)
UKURAN DISPERSI Presented by Astuti Mahardika, M.Pd.
Statistik Diskriptif.
Nilai - Nilai Variasi Prepared: TOTOK SUBAGYO, ST,MM.
Assalamu’alaikum Wr. Wb.
UKURAN DISPERSI (PENYEBARAN DATA)
Oleh : Indah Manfaati Nur, S.Si.,M.Si
UKURAN PENYEBARAN (VARIABILITAS)
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
UKURAN PENYEBARAN (VARIABILITAS)
Harga Deviasi (Ukuran Penyebaran).
Ukuran penyebaran.
UKURAN DISPERSI (PENYEBARAN DATA)
UKURAN PENYEBARAN
BIO STATISTIKA JURUSAN BIOLOGI
UKURAN SIMPANGAN, DISPERSI & VARIASI
UKURAN SIMPANGAN & VARIASI
PENGUKURAN STATISTIK BAG 2 (UKURAN PENYEBARAN DATA)
Ukuran Variasi atau Dispersi
STATISTIKA DESKRIPTIF
Ukuran Variasi atau Dispersi
UKURAN PENYEBARAN Ukuran Penyebaran
Ukuran Variasi atau Dispersi
Ukuran Pemusatan Data Choirudin, M.Pd
Ukuran Pemusatan Data Choirudin, M.Pd
UKURAN PENYEBARAN DATA
UKURAN VARIASI (DISPERSI) Sumber : J.Supranto, hal.127
UKURAN DISPERSI (PENYEBARAN DATA)
BAB 4 UKURAN VARIABILITAS
Ukuran Variasi atau Dispersi
UKURAN VARIASI ATAU DISPERSI (Pengukuran Dispersi)
UKURAN VARIASI ATAU DISPERSI (Pengukuran Varians)
Deskripsi Numerik Data
Universitas Pekalongan
Ukuran Penyebaran Data
Ukuran Variasi atau Dispersi J0682
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
PENGUKURAN DISPERSI, KEMIRINGAN, DAN KERUNCINGAN DISTRIBUSI DATA
NILAI RATA-RATA (CENTRAL TENDENCY)
OLEH : SITTI HAWA, ST, MPW.  Ukuran pemusatan atau disebut rata – rata adalah menunjukan dimana suatu data memusat atau suatu kumpulan pengamatan memusat.
UKURAN VARIASI (DISPERSI )
STATISTIKA DESKRIPTIF Tendensi Sentral & Ukuran Dispersi KELOMPOK 2.
Transcript presentasi:

PENYEBARAN DATA Tujuan Belajar : Setelah mempelajari Materi ini, diharapkan mahasiswa mampu : 1. Menjelaskan pengertian nilai penyebaran data 2. Menjelaskan jenis dan sifat-sifat nilai penyebaran data 3. Menghitung cara perhitungan nilai penyebaran data Lita Dwi Astari

Pengertian Nilai Penyebaran Data Adalah suatu nilai yang menunjukkan seberapa jauh nilai pengamatan tersebar di sekitar nilai rata-rata, sering disebut juga variasi atau dispersi

MENGAPA NILAI PENYEBARAN (DISPERSI) ITU PENTING ?? Dengan perhitungan dispersi, akan diperoleh informasi tambahan tentang penyimpangan yang terjadi pada suatu distribusi Dengan menghitung dispersi, dapat menilai ketepatan nilai tengah dalam mewakili distribusinya Perhitungan dispersi memiliki arti penting untuk mengadakan analisa statistik inferensia

BEBERAPA BENTUK UKURAN PENYEBARAN Ukuran Penyebaran Bab 4 BEBERAPA BENTUK UKURAN PENYEBARAN 1. Rata-rata sama, penyebaran berbeda 2. Rata-rata berbeda dengan penyebaran berbeda 1. Rata-rata sama, penyebaran berbeda

BEBERAPA BENTUK UKURAN PENYEBARAN Ukuran Penyebaran Bab 4 BEBERAPA BENTUK UKURAN PENYEBARAN 3. Rata-rata berbeda dengan penyebaran sama

Nilai-Nilai Penyebaran Data Student Lecture Notes Nilai-Nilai Penyebaran Data Nilai Penyebaran Mutlak : Rentang (Range) Deviasi Kuartil Mean Deviasi Deviasi Standar Nilai Penyebaran Relatif : Koefisien Variasi 6

Student Lecture Notes Rentang (Range) Ukuran variasi data yang paling sederhana Dengan range, akan diketahui dengan segera gambaran seberapa jauh data itu memencar (merentang) tetapi tidak menunjukkan tentang keragaman datanya Proses perhitungannya : Urutkan data dari yang terkecil ke terbesar Nilai range = nilai terbesar – nilai data terkecil Nilai range untuk data kelompok : = Batas bawah kelas terakhir - batas bawah kelas pertama atau = Nilai tengah tertinggi – Nilai tengah terendah 7

Rentang (Range) Contoh 1: Lama rawat 10 pasien di 2 RS Student Lecture Notes Rentang (Range) Contoh 1: Lama rawat 10 pasien di 2 RS Data RS A : 2,2,3,3,3,3,4,4,5,6 ; nilai range = 4 hari Data RS B : 1,1,2,3,3,3,4,5,5,8, ; nilai range = 7 hari Contoh 2 : Berat Badan (kg) f Nt 41 - 45 46 - 50 51 - 55 56 - 60 61 - 65 66 - 70 71 - 75 76 - 80 4 1 2 5 7 43 48 53 58 63 68 73 78 Jumlah 30 Batas bawah kelas terakhir = 76 Batas bawah kelas pertama = 41 Nilai range : R = 76-41 = 35 Nilai tengah tertinggi = 78 Nilai tengah terendah = 43 Nilai range : R = 78 – 43 = 35 8

Student Lecture Notes Kekurangan Range Hanya melibatkan nilai terbesar dan nilai terkecil tanpa melibatkan nilai-nilai lain dalam distribusi Hanya melibatkan 2 nilai terbesar dan terkecil sehingga sangat dipengaruhi oleh adanya nilai ekstrem Range tidak dapat ditentukan pada distribusi dengan kelas interval yang terbuka 9

Simpangan Kuartil (Quartile Deviation) Dihitung dengan cara menghapus nilai-nilai yang terletak di bawah kuartil pertama dan diatas kuartil ketiga, sehingga nilai ekstrik yang berada di bawah maupun diatas dihilangkan Simpangan kuartil didapatkan dengan cara menghitung nilai rata-rata dari Q1 dan Q3 Rumus : Simpangan Kuartil = (Q3 – Q1) 2 Simpangan kuartil lebih stabil dibandingkan range karena tidak dipengaruhi oleh nilai ekstrim Kelemahan : Simpangan kuartil juga tidak memperhitungkan penyimpangan semua nilai tetapi hanya memperhitungkan nilai pada Q1 dan Q3

Contoh 3: Lama rawat 10 pasien di 2 RS Data RS A : 2,2,3,3,3,3,4,4,5,6 Student Lecture Notes Contoh 3: Lama rawat 10 pasien di 2 RS Data RS A : 2,2,3,3,3,3,4,4,5,6 Letak Qi = i/4 x (n + 1) Letak Q1 = ¼ (10 + 1) = 2.75 ≈ 3 yaitu 3 Letak Q3 = ¾ (10 + 1) = 8.25 ≈ 8 yaitu 4 Simpangan kuartil = 4-3 = 0.5 2 11

Simpangan Rata-Rata (Mean Deviation) Student Lecture Notes Simpangan Rata-Rata (Mean Deviation) Merupakan penyimpangan nilai-nilai individu terhadap nilai rata-rata Angka selisih antara hasil pengamatan dengan rata-rata diambil harga mutlaknya tanpa memperhatikan tanda aljabarnya Deviasi rata-rata bermanfaat untuk mengetahui variasi yang terjadi dalam satu kelompok pengamatan atau membandingkan tingkat variabilitas dua kelompok atau lebih Kekurangan deviasi rata-rata yaitu tidak dapat mengetahui arah simpangan ke kiri atau ke kanan 12

Simpangan Rata-Rata (Mean Deviation) Student Lecture Notes Simpangan Rata-Rata (Mean Deviation) Jarak setiap data terhadap mean disebut simpangan, dengan rumus : di = Xi – x Jumlah simpangan Σ (xi- x) = 0, sehingga perlu diabsolutkan : Σlxi- xl Rumus Simpangan Rata-Rata: Mean Deviasi (Sampel) = Σlxi- xl n Rumus Simpangan Rata-Rata untuk data berkelompok: Mean Deviasi (Sampel) = Σf lNti- xl 13

Simpangan Rata-Rata (Mean Deviation) Contoh 3 : Student Lecture Notes Simpangan Rata-Rata (Mean Deviation) Contoh 3 : Data RS A : 2,2,3,3,3,3,4,4,5,6 ; mean = 3.5 hari Mean Deviasi RS A = ((|2-3.5|+|2-3.5|++|3-3.5|+|3-3.5|+ |3-3.5|+|3-3.5|+ |4-3.5|+|4-3.5|+|5-3.5| +|6-3.5|)) / 10 = 1 hari Data RS B : 1,1,2,3,3,3,4,5,5,8, ; mean = 3.5 hari Mean Deviasi RS B = ((|1-3.5|+|1-3.5|++|2-3.5|+|3-3.5|+ |3-3.5|+|3-3.5|+ |4-3.5|+|5-3.5|+|5-3.5| +|8-3.5|)) / 10 = 1.6 hari 14

Deviasi Standar (Standar Deviation) Student Lecture Notes Deviasi Standar (Standar Deviation) Simpangan baku (standar deviation) merupakan ukuran dispersi yang sering digunakan dalam statistika Merupakan akar dari varian yaitu akar dari jumlah selisih hasil pengamatan dengan rata-rata dipangkatkan dua kemudian dibagi dengan jumlah pengamatan Deviasi standar memegang peranan penting karena dapat memberikan gambaran tentang penyimpangan yang terjadi pada setiap nilai hasil pengamatan terhadap rata- rata suatu distribusi Stantar diviasi sampel yang baik seharusnya merupakan ukuran yang tidak bias thd standar deviasi populasi, shg nilai n diganti dengan n-1 untuk sampel 15

Deviasi Standar (Standar Deviation) Rumus-Rumus Varians populasi : Student Lecture Notes Deviasi Standar (Standar Deviation) Rumus-Rumus Varians populasi : Deviasi standar populasi : Varians sampel : Deviasi standar sampel : Deviasi standar untuk data berkelompok (distribusi frekuensi ) : Populasi : Sampel : Ket : Mi = nilai tengah 16

Student Lecture Notes Contoh 4 Berapakah deviasi standar terhadap rata-rata kadar Hb dari 10 orang wanita hamil yang melakukan PNC di suatu rumah sakit dengan hasil sebagai berikut : 8,8,9,9,10,10,11,11,12,12 xi (xi - x) (xi - x)² 8 9 10 11 12 -2 -1 1 2 4 Σ(xi – x)² =20 x = 8+8+9+9+10+10+11+11+12+12 10 = 10 Dengan menggunakan rumus deviasi populasi maka : = 20 = 1.4 10 17

Rumus lain Standar Deviasi : Populasi Sampel

Nilai yang Dibakukan Zi Merupakan nilai simpangan dari nilai Xi 1σ 1σ 1σ 1σ X = µ - 2 X = µ - 1 µ X = µ + 1 X = µ + 2 Zi Merupakan nilai simpangan dari nilai Xi Rata-rata simpangan baku yang dibakukan µz = 0 dan σz = 1

Interpretasi Deviasi Standar Dalam suatu populasi selalu terjadi variasi dari hasil pengamatan baik variasi eksterna maupun variasi interna sebagai akibat hukum alam Semakin besar variasinya semakin tidak seragam datanya sedangkan semakin kecil variasinya maka keseragaman data semakin tinggi Varians dan deviasi standar sampel menunjukkan suatu kecenderungan untuk lebih kecil dari varians dan deviasi standar populasi sehingga untuk mengurangi underestimate, dilakukan koreksi yaitu besarnya n sampel menjadi n-1

Soal Responsi Dari Tabel distribusi frekuensi minggu lalu, hitunglah : Range Simpangan rata-rata Simpangan baku (gunakan menggunakan 3 rumus ) 5 orang anak balita perempuan usia 12 bulan dilakukan pengukuran berat badan sbb : A = 7.5 kg; B = 8 kg ; C = 8,3 kg ; D = 10,5 dan D = 11 kg, hitunglah : Nilai baku dari masing-masing nilai jika diketahui µ = 9.6 kg dan σ = 1.2 kg Buktikan bahwa µz = 0 dan σz = 1

Sekian