Dimensi Tiga (Proyeksi & Sudut).

Slides:



Advertisements
Presentasi serupa
MENGGAMBAR BANGUN RUANG
Advertisements

IRISAN BIDANG.
KUIS PEND MAT II  CEPAT DAN TEPAT .
LINGKARAN.
Translasi Rotasi Refleksi Dilatasi
PROGRAM STUDI PENDIDIKAN MATEMATIKA
BANGUN DATAR DAN BANGUN RUANG
Limas, Kerucut, Tabung, Bola
di Matematika SMA Kelas X Semester 2
Muhammad Zainal Abidin | SMAN 1 Bone-Bone
Irisan pada Bangun Ruang
1. = 5 – 12 – 6 = – (1 - - ) X 300 = = = 130.
IRISAN BIDANG Oleh : Fitria ose, s.sI.
Sudut Antara Dua Bidang
Sudut dua garis bersilangan
BAB 9 DIMENSI TIGA.
Dimensi tiga jarak.
7. APLIKASI INTEGRAL MA1114 KALKULUS I.
Tugas: Power Point Nama : cici indah sari NIM : DOSEN : suartin marzuki.
IRISAN BANGUN RUANG.
BANGUN RUANG Kelas X semester 2 PPPK PETRA Surabaya SK / KD Indikator
3. Menggambar dan menghitung besar sudut antara dua bidang.
Media Pembelajaran Berbasis Teknologi Informasi & Komunikasi
PENURUNAN RUMUS LUAS BANGUN DATAR
PROYEKSI.
SK/KD INDIKATOR MATERI LATIHAN TEST.
LIMAS By zainul gufron s..
DIMENSI TIGA Oleh : Dra. Enok Maesaroh.
Kedudukan Titik, Garis, dan Bidang
Luas Daerah ( Integral ).
SEGI EMPAT 4/8/2017.
BANGUN RUANG SISI DATAR (KUBUS & UNSUR- UNSURNYA)
TRIGONOMETRI Pengertian Perbandingan Trigonometri
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
ASSALAMU’ALAIKUM WR.WB
Bagian ke-1.
Balok Yang akan kita pelajari: Unsur-unsur balok Luas permukaan balok
Dimensi Tiga (Jarak) SMA 5 Mtr.
Kubus.
MENENTUKAN JARAK PADA BANGUN RUANG
Dimensi Tiga X MIA 2 Ayu Amrita (03) Fatima Rahmanita (09)
Nama Kelompok : 1. AMALIA FIDYA W. S
DIMENSI TIGA KELAS X SEMESTER 2.
Tugas media pembelajaran
RUANG DIMENSI TIGA OLEH TIM MGMP MAT SMAN 1 GLENMORE
SUDUT DALAM RUANG DIMENSI TIGA
Dimensi Tiga (Proyeksi & Sudut).
Pembelajaran Berbasis IT
MENENTUKAN JARAK DALAM RUANG
Standar Kompetensi : Menentukan jarak yang melibatkan titik, garis, dan bidang . Kompetensi Dasar : Menentukan jarak dari titik ke garis dan dari titik.
BANGUN RUANG Kelas X semester 2 PPPK PETRA Surabaya SK / KD Indikator
Irisan pada Bangun Ruang
Media Pembelajaran Matematika Jarak Pada Bangun Ruang
KEDUDUKAN GARIS TERHADAP BIDANG
BANGUN RUANG Pengertian
RUANG DIMENSI TIGA STANDAR KOMPETENSI: Menggunakan sifat dan aturan geometri dalam menentukan kedudukan titik, garis, dan bidang; jarak; sudut; dan volume.
Dimensi Tiga Tugas sesi 3 ddom.
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
Contoh melukis irisan bidang
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
Nisa arifiani DIMENSI TIGA JARAK.
JARAK DAN SUDUT Anton Dimas Fikri Achmad Darmawan M. Nirwan Firdausi
Irisan pada Bangun Ruang
Dimensi Tiga ( Proyeksi & Sudut ) Muhammad Zainal Abidin | SMAN 1 Bone-Bone
Dimensi Tiga (Proyeksi & Sudut).
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
1. 2 Setelah menyaksikan tayangan ini anda dapat Menentukan jarak antara unsur-unsur dalam ruang dimensi tiga.
BAB 8 BANGUN RUANG SISI DATAR. KOMPETENSI DATAR 3.9 Membedakan dan menentukan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma,
Transcript presentasi:

Dimensi Tiga (Proyeksi & Sudut)

Proyeksi Pada Bangun Ruang: proyeksi titik pada garis proyeksi titik pada bidang proyeksi garis pada bidang

Proyeksi titik pada garis Dari titik P ditarik garis m garis k garis m memotong k di Q, titik Q adalah hasil proyeksi titik P pada k P m k Q

Contoh Diketahui kubus ABCD.EFGH Tentukan proyeksi titik A pada garis a. BC b.BD c. ET (T perpotongan AC dan BD). A B C D H E F G T

Pembahasan Proyeksi titik A pada a. BC adalah titik B b. BD adalah titik c. ET adalah titik A B C D H E F G T B (AB  BC) A’ T (AC  BD) A’ (AC  ET)

Proyeksi Titik pada Bidang Dari titik P di luar bidang H ditarik garis g  H. Garis g menembus bidang H di titik P’. Titik P’ adalah proyeksi titik P di bidang H P g P’ H

Contoh Diketahui kubus ABCD.EFGH a. Proyeksi titik E pada bidang ABCD adalah…. b. Proyeksi titik C pada bidang BDG A B C D H E F G

Pembahasan a. Proyeksi titik E pada bidang ABCD adalah b. Proyeksi titik C pada bidang BDG CE  BDG A B C D H E F G A P (EA  ABCD) P

Proyeksi garis pada bidang Proyeksi sebuah garis ke sebuah bidang dapat diperoleh dengan memproyek- sikan titik-titik yang terletak pada garis itu ke bidang. A B g A’ g’ H B’ Jadi proyeksi garis g pada bidang H adalah g’

Fakta-fakta 1. Proyeksi garis pada bidang umumnya berupa garis 2. Jika garis h   maka proyeksi garis h pada bidang  berupa titik. 3. Jika garis g // bidang  maka g’ yaitu proyeksi garis g pada dan sejajar garis g

b. Jika panjang rusuk kubus 6 cm, Panjang proyeksi garis CG Contoh 1 Diketahui kubus ABCD.EFGH a. Proyeksi garis EF pada bidang ABCD adalah…. A B C D H E F G b. Jika panjang rusuk kubus 6 cm, Panjang proyeksi garis CG pada bidang BDG adalah….

Jadi proyeksi EF pada ABCD adalah garis AB Pembahasan a. Proyeksi garis EF pada bidang ABCD berarti menentukan proyeksi titik E dan F pada bidang ABCD, yaitu titik A dan B A B C D H E F G Jadi proyeksi EF pada ABCD adalah garis AB

Jadi proyeksi CG pada BDG adalah garis PG dan panjangnya? Pembahasan b. Proyeksi garis CG pada bidang BDG berarti menentukan proyeksi titik C dan titik G pada bidang BDG, yaitu titik P dan G A B C D H E F G P 6 cm Jadi proyeksi CG pada BDG adalah garis PG dan panjangnya?

•Jadi panjang proyeksi garis CG pada bidang BDG adalah 2√6 cm F G •Panjang proyeksi CG pada BDG adalah panjang garis PG. •PG = ⅔.GR = ⅔.½a√6 = ⅓a√6 = ⅓.6√6 P R 6 cm •Jadi panjang proyeksi garis CG pada bidang BDG adalah 2√6 cm

Contoh 2 Diketahui limas beraturanT.ABCD dengan panjang AB = 16 cm, TA = 18 cm Panjang proyeksi TA pada bidang ABCD adalah…. T A D C B 18 cm 16 cm

Jadi panjang proyeksi TA pada bidang ABCD adalah 8√2 cm Pembahasan Proyeksi TA pada bidang ABCD adalah AT’. Panjang AT’= ½AC = ½.16√2 = 8√2 T A D C B 18 cm T’ 16 cm Jadi panjang proyeksi TA pada bidang ABCD adalah 8√2 cm

Sudut Pada Bangun Ruang: Sudut antara dua garis Sudut antara garis dan bidang Sudut antara bidang dan bidang

Sudut antara Dua Garis Yang dimaksud dengan besar sudut antara dua garis adalah besar sudut terkecil yang dibentuk oleh kedua garis tersebut m k

Contoh Diketahui kubus ABCD.EFGH Besar sudut antara garis-garis: a. AB dengan BG b. AH dengan AF c. BE dengan DF A B C D H E F G

Pembahasan Besar sudut antara garis-garis: a. AB dengan BG = 900 b. AH dengan AF = 600 (∆ AFH smss) c. BE dengan DF = 900 (BE  DF) A B C D H E F G

Garis dan Bidang Sudut antara garis a dan bidang V adalah sudut antara dilambangkan (a,V) adalah sudut antara garis a dan proyeksinya pada V. Sudut antara garis PQ dengan V = sudut antara PQ dengan P’Q =  PQP’ P Q V P’

Kemudian hitunglah besar sudutnya! Contoh 1 Diketahui kubus ABCD.EFGH panjang rusuk 6 cm. Gambarlah sudut antara garis BG dengan ACGE, A B C D H E F G 6 cm Kemudian hitunglah besar sudutnya!

Jadi (BG,ACGE) = (BG,KG) = BGK Pembahasan Proyeksi garis BG pada bidang ACGE adalah garis KG (K = titik potong AC dan BD) A B C D H E F G K 6 cm Jadi (BG,ACGE) = (BG,KG) = BGK

Pembahasan BG = 6√2 cm BK = ½BD = ½.6√2 = 3√2 cm ∆BKG siku-siku di K F G K 6 cm sinBGK = Jadi, besar BGK = 300

Nilai tangens sudut antara garis CG dan bidang AFH adalah…. Contoh 2 Diketahui kubus ABCD.EFGH panjang rusuk 8 cm. A B C D H E F G 8 cm Nilai tangens sudut antara garis CG dan bidang AFH adalah….

Nilai tangens sudut antara garis CG dan bidang AFH adalah ½√2 Pembahasan tan(CG,AFH) = tan (PQ,AP) = tan APQ = A B C D H E F G P Q 8 cm Nilai tangens sudut antara garis CG dan bidang AFH adalah ½√2

sudut antara TA dan bidang ABCD adalah…. Contoh 3 Pada limas segiempat beraturan T.ABCD yang semua rusuknya sama panjang, T A B C D a cm sudut antara TA dan bidang ABCD adalah….

sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC Pembahasan • TA = TB = a cm • AC = a√2 (diagonal persegi) • ∆TAC = ∆ siku-siku samakaki T A B C D a cm sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC yang besarnya 450

Bidang dan Bidang Sudut antara bidang  dan bidang  adalah sudut antara garis g dan h, dimana g  (,) dan h  (,). (,) garis potong bidang  dan   h (,)  g

Contoh 1 Diketahui kubus ABCD.EFGH a. Gambarlah sudut antara bidang BDG dengan ABCD b. Tentukan nilai sinus sudut antara BDG dan ABCD! A B C D H E F G

Jadi (BDG,ABCD) = (GP,PC) =GPC Pembahasan a. (BDG,ABCD) • garis potong BDG dan ABCD  BD • garis pada ABCD yang  BD  AC • garis pada BDG yang  BD  GP A B C D H E F G P Jadi (BDG,ABCD) = (GP,PC) =GPC

Jadi, sin(BDG,ABCD) = ⅓√6 Pembahasan b. sin(BDG,ABCD) = sin GPC = = ⅓√6 A B C D H E F G P Jadi, sin(BDG,ABCD) = ⅓√6

Contoh 2 Limas beraturan T.ABC, panjang rusuk alas 6 cm dan panjang rusuk tegak 9 cm. Nilai sinus sudut antara bidang TAB dengan bidang ABC adalah…. A B C T 6 cm 9 cm

Pembahasan •sin(TAB,ABC) = sin(TP,PC) = sinTPC •TC = 9 cm, BP = 3 cm •PC = = •PT = A B C T 6 cm 9 cm P 3

• Lihat ∆ TPC PT = 6√2, PC = 3√3 Aturan cosinus T TC2 = TP2 + PC2 – 2TP.TC.cosTPC 81 = 72 + 27 – 2.6√2.3√3.cosTPC 36√6.cosTPC = 99 – 81 36√6.cosTPC = 18 cosTPC = = T 9 cm 6√2 A C 2 3√3 1 P B

• Lihat ∆ TPC cosP = Maka diperoleh Sin P = Jadi sinus (TAB,ABC) = 12 P √6

Sudut antara bidang FHQP dan bi- dang AFH adalah . Nilai cos =… Contoh 3 Diketahui kubus ABCD.EFGH, pan- jang rusuk 4 cm Titik P dan Q berturut-turut di tengah-tengah AB dan AD. 4 cm A B C D H E F G Q P Sudut antara bidang FHQP dan bi- dang AFH adalah . Nilai cos =…

Pembahasan • (FHQP,AFH) = (KL,KA) = AKL =  • AK = ½a√6 = 2√6 • AL = LM = ¼ AC = ¼a√2 = √2 • KL = = =3√2 4 cm A B C D H E F G K  Q L M P

Pembahasan • AK = 2√6 , AL = √2 KL = 3√2 Jadi nilai cos = Aturan Cosinus: AL2 = AK2 + KL2 – 2AK.KLcos 2 = 24 + 18 – 2.2√6.3√2.cos 24√3.cos = 42 – 2 24√3.cos = 40 cos = K  M A L Jadi nilai cos =

Di bawah ini adalaha Limas segi empat beraturan dengan panjang rusuk 6 cm. Tentukanlah nilai dari Sin sudut antara AT dan bidang ABCD Cos Sudut antara bidang TAB dan ABCD Cos Sudut antara bidang TAB dan TDC T D C A B

TERIMA KASIH