SIMULASI MONTE CARLO.

Slides:



Advertisements
Presentasi serupa
UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Advertisements

Teori Graf.
Statistika Deskriptif: Distribusi Proporsi
TURUNAN/ DIFERENSIAL.
START.
Pertemuan II SEBARAN PEUBAH ACAK
Mata Kuliah Teknik Digital TKE 113
Bulan maret 2012, nilai pewarnaan :
Menempatkan Pointer Q 6.3 & 7.3 NESTED LOOP.
Tugas Praktikum 1 Dani Firdaus  1,12,23,34 Amanda  2,13,24,35 Dede  3,14,25,36 Gregorius  4,15,26,37 Mirza  5,16,27,38 M. Ari  6,17,28,39 Mughni.
1suhardjono waktu 1Keterkatian PKB dengan Karya Inovatif, Macam dan Angka Kredit Karya Inovatif (buku 4 halaman ) 3 Jp 3Menilai Karya Inovatif.
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Korelasi dan Regresi Ganda
Bab 11A Nonparametrik: Data Frekuensi Bab 11A.
Distribusi Probabilitas 1
1. = 5 – 12 – 6 = – (1 - - ) X 300 = = = 130.
BADAN KOORDINASI KELUARGA BERENCANA NASIONAL DIREKTORAT PELAPORAN DAN STATISTIK DISAJIKAN PADA RADALGRAM JAKARTA, 4 AGUSTUS 2009.
Interval Prediksi 1. Digunakan untuk melakukan estimasi nilai X secara individu 2. Tidak digunakan untuk melakukan estimasi parameter populasi yang tidak.
DISTRIBUSI PROBABILITAS
Mari Kita Lihat Video Berikut ini.
4. PROSES POISSON Prostok-4-firda.
Bab 6B Distribusi Probabilitas Pensampelan
ANALISA NILAI KELAS A,B,C DIBUAT OLEH: NAMA: SALBIYAH UMININGSIH NIM:
TURUNAN DIFERENSIAL Pertemuan ke
BARISAN DAN DERET ARITMETIKA
ELASTISITAS PERMINTAAN DAN PENAWARAN
Oleh Widiyastuti,S.Pd, M.Eng SMA N 3 BOYOLALI
UKURAN PENYEBARAN DATA
DISTRIBUSI PROBABILITAS
PENJADWALAN PROYEK_2.
DISTRIBUSI PROBABILITAS DISKRET
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Rabu 23 Maret 2011Matematika Teknik 2 Pu Barisan Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat – sifat barisan Barisan Monoton.
: : Sisa Waktu.
Pengujian Hipotesis Parametrik 2
Luas Daerah ( Integral ).
PEMINDAHAN HAK DENGAN INBRENG
Penilaian Dalam Tes Bahasa
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
Kuliah ke 12 DISTRIBUSI SAMPLING
Bulan FEBRUARI 2012, nilai pewarnaan :
AREAL PARKIR PEMERINTAH KABUPATEN JEMBRANA
Bab 10 Struktur Sekor Struktur Sekor
Metode Shapiro-Wilks dan Kolmogorov-Smirnov untuk Uji Normalitas
Modul 6 : Estimasi dan Uji Hipotesis
DISTRIBUSI NORMAL.
DISTRIBUSI PROBABLITAS
PENGUJIAN HIPOTESA Probo Hardini stapro.
DISTRIBUSI PROBABILITAS DISKRET
STATISTIK NONPARAMETRIK Kuliah 10: Uji k-Sampel Berhubungan: Uji Friedman Dosen: Dr. Hamonangan Ritonga, MSc Sekolah Tinggi Ilmu Statistik Jakarta.
PENGUJIAN HIPOTESIS RATA-RATA (MEAN) 1 SAMPEL
Lecture Note: Trisnadi Wijaya, S.E., S.Kom
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
TEORI ANTRIAN DAN SIMULASI
Statistika Deskriptif: Statistik Sampel
DISTRIBUSI FREKUENSI.
Statistika Deskriptif: Distribusi Proporsi
Dasar probabilitas.
7. RANTAI MARKOV WAKTU KONTINU (Kelahiran&Kematian Murni)
Korelasi dan Regresi Ganda
WISNU HENDRO MARTONO,M.Sc
BAB 8 SIMULASI MONTE CARLO
SIMULASI MONTE CARLO.
DISTRIBUSI PELUANG Pertemuan ke 5.
DISTRIBUSI PROBABLITAS (SSTS 2305 / 3 sks)
BAB VII Simulasi Monte Carlo.
BAB VII Simulasi Monte Carlo.
Pembangkit Random Variate
DISUSUN OLEH : IPHOV KUMALA SRIWANA
Simulasi Monte Carlo Pertemuan 5 MOSI T.Informatika Ganjil 2008/2009
Transcript presentasi:

SIMULASI MONTE CARLO

Simulasi Monte Carlo dikenal juga dengam Sampling Simulation atau Monte Carlo Sampling Technique. Sampling Simulation ini menggambarkan kemungkinan penggunaan data sampel dalam metode Monte Carlo dan juga sudah dapat diketahui atau diperkirakan distribusinya.

Metode Simulasi Monte Carlo ini cukup sederhana di dalam menguraikan ataupun menyelesaikan persoalan, termasuk dalam penggunaan program-programnya di komputer.

Dalam kesederhanaan cara, simulasi ini memebrikan tiga batasan dasar yang perlu diperhatikan : Apabila suatu persoalan sudah dapat diselesaikan atau dihitung jawabannya secara matematis dengan tuntas maka hendaknya jangan menggunakan simulasi ini. Apabila sebagian persoalan tersebut dapat diuraikan secara analitis dengan baik, maka penyelesaiannya lebih baik dilakukan secara terpisah, yaitu sebagian dengan cara analitis dan yang lainnya dengan simulasi Monte Carlo untuk kemudian disusun kembali keseseluruhan sebagai penyelesaian akhir. Apabila mungkin maka dapat digunakan simulasi perbandingan . Kadangkala simulasi ini dibutuhkan apabila dua sistem dengan perbedaan-perbedaan pada parameter, distribusi, cara-cara pelaksanaannya.

Contoh Distribusi Diskret Uniform Sebuah perusahaan bakery membuat suatu kelompok jenis donat yang dijual ke toko-toko dengan distribusi permintaan diskret uniform dengan kebutuhan harian maksimum=100 unit dan minimal =40 unit Tentukan random variate dari distribusi diskret uniform tersebut untuk dapat disimulasikan dengan a=77, Zo=12357, m=127. Apabila digunakan random number dengan data a=77, Zo=12357, m=127, perhitungkan sebanyak lima kali pengambilan random number.

Ilustrasi Penggunaan Simulasi Contoh sebuah toko sepatu memperkirakan permintaan sepatu per harinya menurut suatu pola distribusi sbb: Tabel 1. Distribusi Permintaan No. Urut Permintaan/hari Frekunsi permintaan 1 4 pasang 5 2 5 pasang 10 3 6 Pasang 15 4 7 Pasang 30 8 Pasang 25 6 9 Pasang Jumlah 100

Dari data masa lalu sudah dapat dihitung dengan baik Dari data masa lalu sudah dapat dihitung dengan baik. Kemudian pengusaha toko hendak memperkirakan pola permintaan/demand untuk 20 hari dalam bulan berikutnya. Penyelesaian: Buat Imperical data distribusinya yaitu Fungsi distribusi densitas atau frekuensi distribusi dari historical data yang ada.(Tabel 1) Distribusi permintaan ini diubah dalam bentuk fungsi distribusi kumulatif (Cummulative Distributed Frequency-CDF) (Tabel 2)

Tabel 2. Fungsi Kumulatif Distribusi Permintaan c. Setiap permintaan (demand) terserbut diberi angka penunjuk batasn (tag number/label number) yang dapat dinyatakan pada tabel 3. No. Urut Permintaan/hari Distribusi Densitas Fungsi Kumulatif Distribusi 1 2 3 4 5 6 4 pasang 5 pasang 6 pasang 7 pasang 8 pasang 9 pasang 0.05 0.10 0.15 0.30 0.25 0.60 0.85 1.00 Jumlah

Tabel 3. Angka Penunjuk Batasan No. Urut Permintaan/hari Distribusi Densitas Tag Number 1 2 3 4 5 6 4 pasang 5 pasang 6 pasang 7 pasang 8 pasang 9 pasang 0.05 0.10 0.15 0.30 0.25 00-05 06-15 16-30 31-60 61-85 86-99

d. Lakukan penarikan random number dengan salah satu rumus yang diuraikan di atas sehingga didapatkan berapa banyak permintaan setiap harinya. Untuk 10 nilai random number: 1. 0.5751 6. 0.2888 2. 0.1270 7. 0.9518 3. 0.7039 8. 0.7348 4. 0.3853 9. 0.1347 5. 0.9166 10.0.9014 Dari random number ini hanya diambil dua angka di depannya, yang kemudian dicocokan pada angka Tabel 3. Hasilnya adalah kesimpulan pasangan sepatu yang dibutuhkan setiap harinya.

Jumlah pasangan sepatu e. Dari hasil pengambilan random number tersebut kemudian dapat disusun suatu tabel daru urutan hari-hari permintaan dan jumlah pasangan sepatu yang dibutuhkan. No. Hari permintaan Jumlah pasangan sepatu Penjelasan 1 2 3 4 5 6 7 8 9 10 7 pasang 5 pasang 8 pasang 9 pasang 6 pasang Terdapat 7 pasang (2) 5 pasang (2) 8 pasang (2) 6 pasang (2) 9 pasang (2) Yang tertinggi 9 pasang

Produksi Suku Cadang Panjang Part A Panjang Part B Panjang Dalam usaha pendekatan simulasi untuk ilustrasi suatu pabrik asembling suatu barang yang disebut Part C. Barang ini dibuat dari gabungan dua bagian yang lain yaitu Part A dan Part B yang dibeli dari suplier. Ini berarti panajng Part A dengan Part B yang terpakai. Tabel 5. Distribusi Probabilitas Panjang Part A dan Part B Panjang Part A Panjang Part B Panjang Probabilitas 10 11 12 13 0.25 17 18 19 20 21 22 0.07 0.14 0.23 0.38 0.12 0.06

Dari data dan persoalan ini akan dicari dan ditentukan estimasi dari rerata (mean) dan variance atau standar deviasi dari panjang Part C yang merupakan penjumlahan Part A dan Part B. sebagai proses penyelesaian data tersebut akan diuraikan dengan 3 cara yang berbeda yaitu: Dengan menggunakan pendekatan simulasi dengan teknik-teknik sampling. Dengan menggunakan cara-cara ekspektasi dari Part A dan part B dari Tabel 5. Dengan menggunakan fisik sebagai hasil dari Part a dan Part B

Menggunakan Cara Pendekatan Simulasi dengan Teknik-Teknik Sampling. Tabel 6. CDF dan Tag Part A Panjang (cm) Probabilitas CDF Tag number 10 11 12 13 0.25 0.50 0.75 1.00 0 ≤ Ri ≤ 0.25 0.25 ≤ Ri ≤ 0.50 0.50 ≤ Ri ≤ 0.75 0.75 ≤ Ri ≤ 1.00

Tabel 7. Random sampling panjang Part A No. Random number Hasil Panjang Random Sampling 1 2 3 4 5 6 7 8 9 10 0.0589 0.6733 0.4799 0.9486 0.6139 0.5933 0.9341 0.1782 0.3473 0.5644 10 cm 12 cm 11 cm 13 cm

Tabel 8. CDF dan Tag number Part B Setelah tabel tag number selesai dibuat maka kemudian akan dilakukan penarikan random number dari komputer untuk meneliti 10 random number dengan hasil panjang Part B sbb: Panjang (cm) Probabilitas CDF Tag number 17 18 19 20 21 22 0.07 0.14 0.23 0.38 0.12 0.06 0.21 0.44 0.82 0.94 1.00 0 ≤ Ri ≤ 0.07 0.07 ≤ Ri ≤ 0.21 0.21 ≤ Ri ≤ 0.44 0.44≤ Ri ≤ 0.82 0.82≤ Ri ≤ 0.94 0.94≤ Ri ≤ 1.00

Tabel 9. Tag number untuk Part B No. Random number Hasil panjang Random Sampling (cm) 1 2 3 4 5 6 7 8 9 10 0.8173 0.8941 0.1997 0.3945 0.7065 0.0113 0.8075 0.7918 0.0194 0.3298 20 21 18 19 17

Tabel 10. Simulasi Panjang Part C No. Sampel Panjang Part A Panjang Part B Panjang Part C=A+B Kuadrat Part (C) 1 2 3 4 5 6 7 8 9 10 12 11 13 20 21 18 19 17 30 33 29 32 28 31 900 1089 841 1024 784 961 Jumlah 307 9453

Perhitungan Rata-rata/mean Variance C Standar Deviasi Part C Ini hasil akhir dari Part C melalui simulasi komputer

Pendekatan dengan cara Ekspektasi 1. Untuk rerata/mean dari x: 2. Untuk Variance (x): Dari rumus ini dapat dicari masing-masing Part A dan Part B Untuk Part A diperoleh : Rerata/Mean dari Part A E(A)=(10*0.25)+(11*0.25)+(12*0.25)+(13*0.25)=11.5 Variance(A) =(10-11.5)2*0.25+(11-11.5)2*0.25+(12-11.5)2*0.25 +(13-11.5) 2* 0.25=1.25 Standar Deviasi (A) = b. Untuk Part B caranya sama dengan Part A dengan tabel 5 c. Untuk Part C= Part A + Part B Rerata/Mean (C) =E(A) + E(B)

Pendekatan Sampling Secara Langsung Pendekatan sampling secara langsung diambil dari sejumlah Part A dan sejumlah Part B melalui cara random maka didapat panjang Part C. Tabel 11. Hasil Part C dari sampel Part A dan B No Sampel Panjang Part A Panjang Part B Panjang Part C=A+B Kuadrat Part (C) 1 2 3 4 5 6 7 8 9 10 12 11 13 21 17 20 19 22 18 33 27 31 29 35 30 28 1089 729 961 841 1225 900 Jumlah 303 9229

Perhitungan Rerata/mean(C)= Sedangkan untuk Variance (C) Standar Deviasi (C)= Dengan demikian bila dibandingkan ketiga cara diatas maka Simulasi memberikan hasil yang cukup baik dan dapat dipakai dengan ketelitian yang tinggi.