Integrated Plant Nutrient Management PENGELOLAAN HARA TANAMAN TERPADU Integrated Plant Nutrient Management
PRESENTASI & DISKUSI Integrated Nutrient management, Integrated Water Management, Integrated Soil management, etc
Apa yang dimaksud dengan hara tanaman ? Mengapa perlu dikelola secara terpadu ? Apa tujuan dari pengelolaan hara tanaman terpadu ? Hara tanaman apa saja yang dapat dikelola secara terpadu ? Bagaimana cara pengelolaannya ?
UNSUR YANG ADA DALAM JARINGAN TANAMAN ≠ UNSUR HARA YANG DIBUTUHKAN TANAMAN
Agroecology: science & sustainability Fertilizers Cover crops Green manures Mulching Compost Rotations Enhanced Soil Fertility Healthy Agroecosystem Integrated Plant Management Decisions Interactions (+; -) Synergisme Crop diversity Cultural practices Pesticides Herbicides Habitat modification Enhanced Pest Regulation Healthy Crop
INTEGRATED NUTRIENT MANAGEMENT Integrated Nutrient Management advocates balanced & integrated use of fertilizers. INM envisage following components : Use of Chemical fertilisers including secondary and micro-nutrients, Bio-fertilisers, Organic manures, green manures, press mud etc. Application of INM needs to be based upon Soil test results (ideally)
Dikelola jumlah (takaran)nya HUKUM MINIMUM LIEBIG minimum
Concentration of Nutrient in Tissue (dry basis) Critical Concentration 10% Reduction in Growth Luxury Consumption Toxicity Critical Nutrient Range (no symptoms) Visual Symptoms Deficiency Visual Symptoms Concentration of Nutrient in Tissue (dry basis) Critical Concentration
INTERAKSI HARA DALAM TANAH Dikelola jenis (macam) hara-nya INTERAKSI HARA DALAM TANAH
N berlebihan meningkatkan kekahatan tembaga (Cu) & boron (B), tingkatkan kerentanan thd serangan hama & penyakit, P berlebihan mengganggu serapan tembaga (Cu), besi (Fe) dan seng (Zn), K berlebihan menimbulkan kekahatan boron & menurunkan rasio minyak terhadap tandan pada sawit, Tembaga (Cu) & sulfat berlebihan hambat serapan Mo,
Tembaga, seng & mangan berlebihan hambat serapan Fe, K atau Na berlebihan turunkan serapan mangan & boron, N & Mg berlebihan sebabkan kekahatan tembaga, Pengapuran (Ca) berlebihan turunkan serapan boron & kekahatan Mg, Kelebihan besi, tembaga atau seng hambat serapan Mn.
How the pH of Soil Affects the Availability of Nutrients Different types of plants have different soil pH requirements
Dikelola jenis (macam) sumber hara-nya Mineral Organik Gas
Plant roots – the primary route for mineral nutrient acquisition Meristematic zone Cells divide both in direction of root base to form cells that will become the functional root and in the direction of the root apex to form the root cap Elongation zone Cells elongate rapidly, undergo final round of divisions to form the endodermis. Some cells thicken to form casparian strip Maturation zone Fully formed root with xylem and phloem – root hairs first appear here
ROOT ABSORBS DIFFERENT MINERAL IONS IN DIFFERENT AREAS Calcium Apical region Iron Apical region (barley) Or entire root (corn) Potassium, nitrate, ammonium, and phosphate All locations of root surface In corn, elongation zone has max K accumulation and nitrate absorption In corn and rice, root apex absorbs ammonium faster than the elongation zone does In several species, root hairs are the most active phosphate absorbers
WHY SHOULD ROOT TIPS BE THE PRIMARY SITE OF NUTRIENT UPTAKE? Tissues with greatest need for nutrients Cell elongation requires Potassium, nitrate, and chlorine to increase osmotic pressure within the wall, Ammonium is a good nitrogen source for cell division in meristem, Apex grows into fresh soil and finds fresh supplies of nutrients. Nutrients are carried via bulk flow with water, and water enters near tips, Maintain concentration gradients for mineral nutrient transport and uptake.
ROOT UPTAKE SOON DEPLETES NUTRIENTS NEAR THE ROOTS Formation of a nutrient depletion zone in the region of the soil near the plant root Forms when rate of nutrient uptake exceeds rate of replacement in soil by diffusion in the water column Root associations with Mycorrhizal fungi help the plant overcome this problem
Dasar Penetapan PEMUPUKAN BERIMBANG Musim potensi fotosintesis, Potensi produksi tanaman, Interaksi hara (nol, sinergisme, antagonisme), Hara total vs tersedia tanah & faktor penjerapnya,, Reaksi pupuk (kemasaman akibat 100 kg Za diatasi dg 107 kg kaptan; 100 kg Urea dg 36 kg kaptan), Jumlah & perbandingan hara terbawa panen, Kandungan hara dlm daun (efektivitas serapan), Aktivitas Biota tanah, Cara & waktu pemberian pupuk.
INTERAKSI POSITIF (SINERGISME) : Pemberian Zn tingkatkan serapan K, perbaiki status N, P & Ca didalam tanaman, tingkatkan produksi kelapa sawit sampai 12 – 78%, Pemberian Zn melalui daun (larutan 1000 ppm Zn) lebih efektif drpd pemberian lewat tanah atau injeksi
C H O N Ca 16 Essential Elements P Mg K S B Cl Cu Fe Mn Mo Zn
Non-Mineral Nutrients Carbon (C) Hydrogen (H) Oxygen (O) Used in photosynthesis
MINERAL NUTRIENTS Major Nutrients Micronutrients Secondary Nutrients Nitrogen (N) Phosphorus (P) Potassium (K) Micronutrients Boron (B) Chloride (Cl) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) Zinc (Zn) Secondary Nutrients Calcium (Ca) Magnesium (Mg) Sulfur (S)
Kation2 dalam larutan tanah Muatan Negatif Kation2 teradsorbsi Ca2+ H+ K+ Mg2+ NH4+ Na+ H+ K+ Mg2+ NH4+ Na+ Kation2 dalam larutan tanah fenolik O- karboksil COO- hidroksil O- COO- SATUAN INTI KOLOID HUMUS (C, H & O) O- COO- O- karboksil COO- fenolik O- karboksil COO- ADSORPSI (JERAPAN) KATION OLEH KOLOID HUMUS & SEL-SEL MIKROBA DALAM TANAH
NEGATIVELY CHARGED IONS ARE CALLED ANIONS NUTRIENT CHEMICAL SYMBOL IONIC FORM Chlorine Cl Cl- Nitrate N NO3- Sulfate S SO4= Borate B BO4= Phosphate P H2PO4-
SIFAT KATION-ANION - - + Unlikes Attract + Likes Repel - + - +
Negatively Charged Colloids Attract Cations K+ - - - Soil Colloid H+ - - - Ca++ - - - Mg++ Na+
CATION EXCHANGE CAPACITY
HOW DOES CATION EXCHANGE AFFECT SOIL pH? Raising soil pH with lime Ca(OH)2 + 2H+ Ca2+ + 2H2O
HARA MAKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK UNSUR HARA YANG DIBUTUHKAN TANAMAN HARA MAKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK KONSENTRASI (%) BOBOT KERING Nitrogen (N) NH4+; NO3- 4,0 Fosfor (P) PO43-; HPO42-; H2PO4- 0,5 Kalium (K) K+ Magnesium (Mg) Mg2+ Belerang (S) SO42- Kalsium (Ca) Ca2+ 1,0
DISERAP TANAMAN DALAM BENTUK KONSENTRASI BOBOT KERING HARA MIKROESENSIAL UNSUR DISERAP TANAMAN DALAM BENTUK KONSENTRASI BOBOT KERING Besi (Fe) Fe 2+; Fe3+ 200 ppm Mangan (Mn) Mn2+ Seng (Zn) Zn2+ 30 ppm Tembaga (Cu) Cu2+ 10 ppm Boron (B) BO32-; B4O72- 60 ppm Molibden (Mo) MoO42- 2 ppm Klor (Cr) Cl- 3000 ppm
CATION EXCHANGE CAPACITY (CEC) The total number of exchangeable cations a soil can hold (amount of its negative charge) Determined in the lab using “conventional” procedure
“Conventional” CEC determination by displacement of cations with ammonium acetate extraction Mg++ K+ Al 3+ NH4+ S O I L NH4+ H+ Ca++ Mg++ K+ Al 3+ NH4+ + + 9 OAc + 9 NH4OAc Solution
S S O O I I L L Displacement of ammonium ions with KCl solution NH4+ S O I L K+ + 9 KCl + 9 NH4+ + 9 Cl- Solution Filter and measure ammonium by steam distillation of ammonia
Actual Soil Test Lab CEC Method - usually a summation method Cations determined by: extraction using ammonium acetate, Mehlich 1, or Mehlich 3 extractants analysis using atomic absorption spectrometry or ICP equipment Sum of extractable cations (Ca, Mg, K, Na), with some adjustment for H+ and Al3+(using pH), gives estimate of “true” CEC
Generally ….the higher the CEC The more fertile the soil tends to be The more clay the soil tends to have The more organic matter a soil tends to have (especially for weathered, sandy, soils in the South)
CLAY AND ORGANIC MATTER HAVE GREATEST INFLUENCE ON CEC 10-150 meq/100g Organic Matter 200-400 meq/100g ORGANIC MATTER HAS A HIGHER CEC