Muhammad Zainal Abidin | SMAN 1 Bone-Bone

Slides:



Advertisements
Presentasi serupa
MENGGAMBAR BANGUN RUANG
Advertisements

IRISAN BIDANG Oleh : Suyudi Suhartono, S.Pd.
IRISAN BIDANG.
Dimensi Tiga (Proyeksi & Sudut).
PROGRAM STUDI PENDIDIKAN MATEMATIKA
di Matematika SMA Kelas X Semester 2
Irisan pada Bangun Ruang
IRISAN BIDANG Oleh : Fitria ose, s.sI.
Sudut Antara Dua Bidang
BAB 9 DIMENSI TIGA.
Dimensi tiga jarak.
IRISAN BANGUN RUANG.
BANGUN RUANG Kelas X semester 2 PPPK PETRA Surabaya SK / KD Indikator
IRISAN BANGUN RUANG
NAMA KELOMPOK : YUSNITA RAHMAWATI (A ) NOUR AFIFAH FITRIYANI (A )
3. Menggambar dan menghitung besar sudut antara dua bidang.
Media Pembelajaran Berbasis Teknologi Informasi & Komunikasi
PROYEKSI.
SK/KD INDIKATOR MATERI LATIHAN TEST.
LIMAS By zainul gufron s..
DIMENSI TIGA Oleh : Dra. Enok Maesaroh.
Kedudukan Titik, Garis, dan Bidang
BANGUN RUANG SISI DATAR (KUBUS & UNSUR- UNSURNYA)
ASSALAMU’ALAIKUM WR.WB
Dimensi Tiga (Jarak) SMA 5 Mtr.
RUANG DIMENSI TIGA
Kubus.
MATEMATIKA SMA KELAS X Oleh HARSUMDA.
ﺒﺴﻢﺍﷲﺍﻠﺮﺣﻣﻥﺍﻟﺮﺣﯿﻢ ASSALAMU'ALAIKUM Wr. Wb..
Jarak Definisi: Jarak antara dua buah bangun adalah panjang ruas garis penghubung terpendek yang menghubungkan dua titik pada bangun-bangun tersebut.
MENENTUKAN JARAK PADA BANGUN RUANG
Dimensi Tiga X MIA 2 Ayu Amrita (03) Fatima Rahmanita (09)
Nama Kelompok : 1. AMALIA FIDYA W. S
DIMENSI TIGA KELAS X SEMESTER 2.
Tugas media pembelajaran
RUANG DIMENSI TIGA OLEH TIM MGMP MAT SMAN 1 GLENMORE
SUDUT DALAM RUANG DIMENSI TIGA
Dimensi Tiga (Proyeksi & Sudut).
GEOMETRI ANALITIK RUANG SUDUT DALAM RUANG
GARIS-GARIS ISTIMEWA DALAM SEGITIGA
Pembelajaran Berbasis IT
MENENTUKAN JARAK DALAM RUANG
Standar Kompetensi : Menentukan jarak yang melibatkan titik, garis, dan bidang . Kompetensi Dasar : Menentukan jarak dari titik ke garis dan dari titik.
BANGUN RUANG Kelas X semester 2 PPPK PETRA Surabaya SK / KD Indikator
Irisan pada Bangun Ruang
Media Pembelajaran Matematika Jarak Pada Bangun Ruang
Ekayani Khusmawati Syukrillah
KEDUDUKAN GARIS TERHADAP BIDANG
BANGUN RUANG Pengertian
Disusun oleh : Nur Maidah Naimah (A )
RUANG DIMENSI TIGA STANDAR KOMPETENSI: Menggunakan sifat dan aturan geometri dalam menentukan kedudukan titik, garis, dan bidang; jarak; sudut; dan volume.
VENISSA DIAN MAWARSARI, M.Pd
Dimensi Tiga Tugas sesi 3 ddom.
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
Irisan pada Bangun Ruang
KUBUS UNSUR-UNSUR KUBUS.
Contoh melukis irisan bidang
Dimensi tiga: IRISAN KELAS III SMK SEMESTER 1 Oleh: Sukani, S.Pd.
MENENTUKAN JARAK DUA GARIS YANG SEJAJAR
Nisa arifiani DIMENSI TIGA JARAK.
JARAK DAN SUDUT Anton Dimas Fikri Achmad Darmawan M. Nirwan Firdausi
Irisan pada Bangun Ruang
Dimensi Tiga ( Proyeksi & Sudut ) Muhammad Zainal Abidin | SMAN 1 Bone-Bone
Dimensi Tiga (Proyeksi & Sudut).
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
1 Dimensi Tiga (Jarak ). 2 KOMPETENSI DASAR : Menganalisis titik, garis dan bidang pada geometri dimensi tiga.
1. 2 Setelah menyaksikan tayangan ini anda dapat Menentukan jarak antara unsur-unsur dalam ruang dimensi tiga.
T A B C D E P Q S R V M O N LLL VV   TT TT
BAB 8 BANGUN RUANG SISI DATAR. KOMPETENSI DATAR 3.9 Membedakan dan menentukan luas permukaan dan volume bangun ruang sisi datar (kubus, balok, prisma,
Transcript presentasi:

Muhammad Zainal Abidin | SMAN 1 Bone-Bone Dimensi Tiga (Proyeksi & Sudut) Muhammad Zainal Abidin | SMAN 1 Bone-Bone http://meetabied.wordpress.com http://meetabied.wordpress.com

tayangan ini anda dapat Menentukan proyeksi dan besar sudut dalam Setelah menyaksikan tayangan ini anda dapat Menentukan proyeksi dan besar sudut dalam ruang dimensi tiga http://meetabied.wordpress.com

Proyeksi Pada Bangun Ruang: proyeksi titik pada garis proyeksi titik pada bidang proyeksi garis pada bidang http://meetabied.wordpress.com

Proyeksi titik pada garis Dari titik P ditarik garis m garis k garis m memotong k di Q, titik Q adalah hasil proyeksi titik P pada k P m k Q http://meetabied.wordpress.com

Contoh Diketahui kubus ABCD.EFGH Tentukan proyeksi titik A pada garis a. BC b.BD c. ET (T perpotongan AC dan BD). A B C D H E F G T http://meetabied.wordpress.com

Pembahasan Proyeksi titik A pada a. BC adalah titik B b. BD adalah titik c. ET adalah titik A B C D H E F G T B (AB  BC) A’ T (AC  BD) A’ (AC  ET) http://meetabied.wordpress.com

Proyeksi Titik pada Bidang Dari titik P di luar bidang H ditarik garis g  H. Garis g menembus bidang H di titik P’. Titik P’ adalah proyeksi titik P di bidang H P g P’ H http://meetabied.wordpress.com

Contoh Diketahui kubus ABCD.EFGH a. Proyeksi titik E pada bidang ABCD adalah…. b. Proyeksi titik C pada bidang BDG A B C D H E F G http://meetabied.wordpress.com

Pembahasan a. Proyeksi titik E pada bidang ABCD adalah b. Proyeksi titik C pada bidang BDG CE  BDG A B C D H E F G A P (EA  ABCD) P http://meetabied.wordpress.com

Proyeksi garis pada bidang Proyeksi sebuah garis ke sebuah bidang dapat diperoleh dengan memproyek- sikan titik-titik yang terletak pada garis itu ke bidang. A B g A’ g’ H B’ Jadi proyeksi garis g pada bidang H adalah g’ http://meetabied.wordpress.com

1. Proyeksi garis pada bidang umumnya berupa garis Fakta-fakta 1. Proyeksi garis pada bidang umumnya berupa garis 2. Jika garis h   maka proyeksi garis h pada bidang  berupa titik. 3. Jika garis g // bidang  maka g’ yaitu proyeksi garis g pada dan sejajar garis g http://meetabied.wordpress.com

b. Jika panjang rusuk kubus 6 cm, Panjang proyeksi garis CG Contoh 1 Diketahui kubus ABCD.EFGH a. Proyeksi garis EF pada bidang ABCD adalah…. A B C D H E F G b. Jika panjang rusuk kubus 6 cm, Panjang proyeksi garis CG pada bidang BDG adalah…. http://meetabied.wordpress.com

Jadi proyeksi EF pada ABCD adalah garis AB Pembahasan a. Proyeksi garis EF pada bidang ABCD berarti menentukan proyeksi titik E dan F pada bidang ABCD, yaitu titik A dan B A B C D H E F G Jadi proyeksi EF pada ABCD adalah garis AB http://meetabied.wordpress.com

Jadi proyeksi CG pada BDG adalah garis PG dan panjangnya? Pembahasan b. Proyeksi garis CG pada bidang BDG berarti menentukan proyeksi titik C dan titik G pada bidang BDG, yaitu titik P dan G A B C D H E F G P 6 cm Jadi proyeksi CG pada BDG adalah garis PG dan panjangnya? http://meetabied.wordpress.com

•Jadi panjang proyeksi garis CG pada bidang BDG adalah 2√6 cm F G •Panjang proyeksi CG pada BDG adalah panjang garis PG. •PG = ⅔.GR = ⅔.½a√6 = ⅓a√6 = ⅓.6√6 P R 6 cm •Jadi panjang proyeksi garis CG pada bidang BDG adalah 2√6 cm http://meetabied.wordpress.com

Contoh 2 Diketahui limas beraturanT.ABCD dengan panjang AB = 16 cm, TA = 18 cm Panjang proyeksi TA pada bidang ABCD adalah…. T A D C B 18 cm 16 cm http://meetabied.wordpress.com

Jadi panjang proyeksi TA pada bidang ABCD adalah 8√2 cm Pembahasan Proyeksi TA pada bidang ABCD adalah AT’. Panjang AT’= ½AC = ½.16√2 = 8√2 T A D C B 18 cm T’ 16 cm Jadi panjang proyeksi TA pada bidang ABCD adalah 8√2 cm http://meetabied.wordpress.com

Sudut Pada Bangun Ruang: Sudut antara dua garis Sudut antara garis dan bidang Sudut antara bidang dan bidang http://meetabied.wordpress.com

Sudut antara Dua Garis Yang dimaksud dengan besar sudut antara dua garis adalah besar sudut terkecil yang dibentuk oleh kedua garis tersebut m k http://meetabied.wordpress.com

Contoh Diketahui kubus ABCD.EFGH Besar sudut antara garis-garis: a. AB dengan BG b. AH dengan AF c. BE dengan DF A B C D H E F G http://meetabied.wordpress.com

Pembahasan Besar sudut antara garis-garis: a. AB dengan BG = 900 b. AH dengan AF = 600 (∆ AFH smss) c. BE dengan DF = 900 (BE  DF) A B C D H E F G http://meetabied.wordpress.com

Garis dan Bidang Sudut antara garis a dan bidang  adalah sudut antara dilambangkan (a,) adalah sudut antara garis a dan proyeksinya pada . Sudut antara garis PQ dengan V = sudut antara PQ dengan P’Q =  PQP’ P Q V P’ http://meetabied.wordpress.com

Kemudian hitunglah besar sudutnya! Contoh 1 Diketahui kubus ABCD.EFGH panjang rusuk 6 cm. Gambarlah sudut antara garis BG dengan ACGE, A B C D H E F G 6 cm Kemudian hitunglah besar sudutnya! http://meetabied.wordpress.com

Jadi (BG,ACGE) = (BG,KG) = BGK Pembahasan Proyeksi garis BG pada bidang ACGE adalah garis KG (K = titik potong AC dan BD) A B C D H E F G K 6 cm Jadi (BG,ACGE) = (BG,KG) = BGK http://meetabied.wordpress.com

Pembahasan BG = 6√2 cm BK = ½BD = ½.6√2 = 3√2 cm ∆BKG siku-siku di K F G K 6 cm sinBGK = Jadi, besar BGK = 300 http://meetabied.wordpress.com

Nilai tangens sudut antara garis CG dan bidang AFH adalah…. Contoh 2 Diketahui kubus ABCD.EFGH panjang rusuk 8 cm. A B C D H E F G 8 cm Nilai tangens sudut antara garis CG dan bidang AFH adalah…. http://meetabied.wordpress.com

Nilai tangens sudut antara garis CG dan bidang AFH adalah ½√2 Pembahasan tan(CG,AFH) = tan (PQ,AP) = tan APQ = A B C D H E F G P Q 8 cm Nilai tangens sudut antara garis CG dan bidang AFH adalah ½√2 http://meetabied.wordpress.com

sudut antara TA dan bidang ABCD adalah…. Contoh 3 Pada limas segiempat beraturan T.ABCD yang semua rusuknya sama panjang, T A B C D a cm sudut antara TA dan bidang ABCD adalah…. http://meetabied.wordpress.com

sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC Pembahasan • TA = TB = a cm • AC = a√2 (diagonal persegi) • ∆TAC = ∆ siku-siku samakaki T A B C D a cm sudut antara TA dan bidang ABCD adalah sudut antara TA dan AC yang besarnya 450 http://meetabied.wordpress.com

Bidang dan Bidang Sudut antara bidang  dan bidang  adalah sudut antara garis g dan h, dimana g  (,) dan h  (,). (,) garis potong bidang  dan   h (,)  g http://meetabied.wordpress.com

Contoh 1 Diketahui kubus ABCD.EFGH a. Gambarlah sudut antara bidang BDG dengan ABCD b. Tentukan nilai sinus sudut antara BDG dan ABCD! A B C D H E F G http://meetabied.wordpress.com

Jadi (BDG,ABCD) = (GP,PC) =GPC Pembahasan a. (BDG,ABCD) • garis potong BDG dan ABCD  BD • garis pada ABCD yang  BD  AC • garis pada BDG yang  BD  GP A B C D H E F G P Jadi (BDG,ABCD) = (GP,PC) =GPC http://meetabied.wordpress.com

Jadi, sin(BDG,ABCD) = ⅓√6 Pembahasan b. sin(BDG,ABCD) = sin GPC = = ⅓√6 A B C D H E F G P Jadi, sin(BDG,ABCD) = ⅓√6 http://meetabied.wordpress.com

Contoh 2 Limas beraturan T.ABC, panjang rusuk alas 6 cm dan panjang rusuk tegak 9 cm. Nilai sinus sudut antara bidang TAB dengan bidang ABC adalah…. A B C T 6 cm 9 cm http://meetabied.wordpress.com

Pembahasan •sin(TAB,ABC) = sin(TP,PC) = sinTPC •TC = 9 cm, BP = 3 cm •PC = = •PT = A B C T 6 cm 9 cm P 3 http://meetabied.wordpress.com

• Lihat ∆ TPC PT = 6√2, PC = 3√3 Aturan cosinus T TC2 = TP2 + PC2 – 2TP.TC.cosTPC 81 = 72 + 27 – 2.6√2.3√3.cosTPC 36√6.cosTPC = 99 – 81 36√6.cosTPC = 18 cosTPC = = T 9 cm 6√2 A C 2 3√3 1 P B http://meetabied.wordpress.com

• Lihat ∆ TPC cosP = Maka diperoleh Sin P = Jadi sinus (TAB,ABC) = 12 P √6 http://meetabied.wordpress.com

Sudut antara bidang FHQP dan bi- dang AFH adalah . Nilai cos =… Contoh 3 Diketahui kubus ABCD.EFGH, pan- jang rusuk 4 cm Titik P dan Q berturut-turut di tengah-tengah AB dan AD. 4 cm A B C D H E F G Q P Sudut antara bidang FHQP dan bi- dang AFH adalah . Nilai cos =… http://meetabied.wordpress.com

Pembahasan • (FHQP,AFH) = (KL,KA) = AKL =  • AK = ½a√6 = 2√6 • AL = LM = ¼ AC = ¼a√2 = √2 • KL = = =3√2 4 cm A B C D H E F G K  Q L M P http://meetabied.wordpress.com

Pembahasan • AK = 2√6 , AL = √2 KL = 3√2 Jadi nilai cos = Aturan Cosinus: AL2 = AK2 + KL2 – 2AK.KLcos 2 = 24 + 18 – 2.2√6.3√2.cos 24√3.cos = 42 – 2 24√3.cos = 40 cos = K  M A L Jadi nilai cos = http://meetabied.wordpress.com

SELAMAT BELAJAR http://meetabied.wordpress.com