T A B U N G.

Slides:



Advertisements
Presentasi serupa
PEMBUKTIAN RUMUS LUAS LINGKARAN
Advertisements

BANGUN RUANG SISI LENGKUNG
Titik yang terletak di tengah-tengah alas dan tutup tabung disebut titik….alas dan titik….tutup tabung.
LINGKARAN.
Bangun Ruang Tiga Dimensi
BANGUN RUANG L I M A S K E R U C U T.
matematika PEMBELAJARAN MATERI: LUAS LINGKARAN Disusun oleh:
KELILING DAN LUAS LINGKARAN
PERSEGIPANJANG Contoh Diketahui Panjang = 15 cm Lebar = 10 cm Tentukan Luasnya? Jawab L = p x l = 15 cm x 10 cm = 150 cm2 LUAS = PANJANG X LEBAR lebar.
MEDIA PEMBELAJARAN BERBASIS IT BANGUN RUANG SISI LENGKUNG KELAS IX SMP
BRSL (Bangun Ruang Sisi Lengkung) KELAS IX SMP Hak Cipta : Anna Rachmawati, SMP muhdela Jogja.
Matematika SMK. Materi Pokok 1.Keliling Bangun Datar 2.Luas Bangun Datar 3.Luas Permukaan Bidang Ruang 4.Volume Bangun Ruang 2.
BRSL (Bangun Ruang Sisi Lengkung) KELAS IX SMP Desain Ulang : Sulistyana, SMP 1 Wno Jogja.
Bangun Ruang Sisi Lengkung ( BRSL )
Rumus Matematika Dasar Bangun Ruang
Lingkaran Matematika SMP Kelas VIII Semester Genap
Assalamu’alaikum Wr.Wb
PReSeNt By,,.
LUAS BANGUN RUANG SISI LENGKUNG
LUAS DAN VOLUME SILINDER
LIMAS MENGGAMBAR LIMAS.
BANGUN RUANG SISI LENGKUNG
LINGKARAN.
DI SUSUN OLEH KELOMPOK 9 KUSNAN,A NANIK MATUL HAYATI NURUL HIDAYATI
tutup selimut alas Unsur – unsur tabung : Unsur unsur tabung
B A N G U N R U A N G K U B U S B A L O K T A B U N G.
BRSL (Bangun Ruang Sisi Lengkung) KELAS IX SMP
Home Profil Tujuan Pembelajaran LUAS DAN VOLUME
LATIHAN OPERATOR.
Pembelajaran Interaktif
TUGAS MEDIA PEMB. MATEMATIKA
Bangun ruang sisi lengkung( brsl)
Bangun Ruang Sisi Lengkung Kelas IX, Semester 1
Erna Erviana Purnama Sari
Luas Permukaan Tabung Oleh KELOMPOK VIII
MENEMUKAN RUMUS TABUNG DENGAN PENDEKATAN PRISMA
Ada yang tau unsur – unsur dari tabung disamping, ?
MENGUKUR VOLUME TABUNG
Kompetensi 2.1 Mengidentifikasi unsur- unsur tabung, kerucut dan bola. 2.1 Menghitung luas selimut dan volume tabung, kerucut dan bola. 2.3 Memecahkan.
Macam-Macam Bangun Ruang
Soal tas.
Keliling dan Luas Daerah LINGKARAN Oleh: Agina Anggraeni.
Soal Matematika “Tabung”
( SMP Kelas VIII Semester Genap) UNIVERSITAS MUHAMMADIYAH SURAKARTA
BANGUN RUANG LUAS PERMUKAAN TABUNG.
Assalamu’alaikum. WR.WB
NAMA : I NENGAH HITEM WIJANA
SILINDER MACAM-MACAM SILINDER.
MENU PENDAHULUAN MATERI LATIHAN THE END. MENU PENDAHULUAN MATERI LATIHAN THE END.
BANGUN RUANG SISI LENGKUNG
ASSALAMU’ALAIKUM WR WB
TABUNG KSM Kiat Sukses Matematika Menuju Ujian Nasional.
BANGUN RUANG SISI LENGKUNG
WORKSHOP MATEMATIKA BANGUN RUANG TABUNG
SMP Kelas IX Semester II
O.
Kelompok Penyusun Pembaca RESET LOGIN
BISMILLAHIRRAHMANIRRAHIM
BANGUN RUANG Dosen : Dina Octaria, S.si, M.pd DISUSUN:
luas permukaan tabung = luas jaring-jaring tabung.
Disusun oleh : EMI SURYANI ( )
Bangun bangun ruang yang sisi alas dan atas bentuknya sama
1. Sebuah topi berbentuk kerucut mempunyai diameter alas 14 cm, dan
Luna, Shafina, Nadine, Naisha
PEMBUKTIAN RUMUS LUAS LINGKARAN
BANGUN DATAR. BANGUN RUANG SISI LENGKUNG BANGUN RUANG : TABUNG KERUCUTBOLA BALOKKUBUS PRISMA.
TABUNG, KERUCUT DAN BOLA KELAS IX SEMESTER I
E. Melukis Grafik Fungsi dan Aplikasi Turunan Fungsi
D. Aplikasi Turunan Fungsi
LUAS BANGUN RUANG SISI LENGKUNG
Transcript presentasi:

T A B U N G

JARING –JARING TABUNG tutup berbentuk lingkaran jari – jari Selimut berbentuk persegipanjang tinggi alas berbentuk lingkaran diameter

LUAS PADA TABUNG LUAS TUTUP DAN ALAS TABUNG LUAS SELIMUT TABUNG L = r² atau L = ¼ d² Keterangan : L = Luas r = Jari-jari d = diameter LUAS SELIMUT TABUNG Luas Selimut tabung = 2 rt K = 2 r t Keterangan : r = jari-jari t = tinggi K = keliling lingkaran

LUAS PERMUKAAN TABUNG Gabungan tutup, alas dan selimut tabung adalah LUAS PERMUKAAN TABUNG. L = 2 x L alas + L selimut = 2 x r² + 2 rt = 2 r (r + t) KETERANGAN : L = Luas permukaan tabung r = Jari-jari t = tinggi tabung

Contoh Soal luas permukaan tabung Jika Sebuah tabung yang mempunyai jari-jari 14 cm dan tinggi 10 cm maka tentukanlah luas permukaan tabung

Jawaban contoh soal Diketahui : r = 14 cm t = 10 cm Ditanyakan : L permukaan tabung Jawaban : L = 2 r ( r + t ) = 2 14 ( 14 + 10 ) = 2.112 cm²