Bab 11B D. Cara Pengujian Kecocokan melalui Uji Liliefors 1. Cara Pengujian Seperti pada uji K-S, kumulasi proporsi dibandingkan dengan fungsi distribusi pada distribusi probabilitas normal Fungsi distribusi pada distribusi probabilitas normal ditemukan melalui tabel sehingga data perlu ditranformasi ke nilai baku Selisih maksimum dalam bentuk harga mutlak T = Sup | Σp| menjadi statistik uji (sup = supremum) Terdapat tabel khusus untuk pengujian hipotesis Tolak H 0 jika T > T tabel Terima H 0 jika T T tabel
Bab 11B Tabel Nilai Kritis Uji Liliefors n = 0,80 = 0,85 = 0,90 = 0,95 = 0,99 4 0,300 0,319 0,352 0,381 0, ,285 0,299 0,315 0,337 0, ,265 0,277 0,294 0,319 0, ,247 0,258 0,276 0,300 0, ,233 0,244 0,261 0,285 0, ,223 0,233 0,249 0,271 0, ,215 0,224 0,239 0,258 0, ,206 0,217 0,230 0,249 0, ,199 0,212 0,223 0,242 0, ,190 0,202 0,214 0,234 0, ,183 0,194 0,207 0,227 0, ,177 0,187 0,201 0,220 0, ,173 0,182 0,195 0,213 0, ,169 0,177 0,189 0,206 0, ,166 0,173 0,184 0,200 0, ,163 0,169 0,179 0,195 0, ,160 0,166 0,174 0,190 0, ,142 0,147 0,158 0,173 0, ,131 0,136 0,144 0,161 0,187 > 30 0,736/√n 0,768/√n 0,805/√n 0,886/√n 1,031/√n
Bab 11B Uji Hipotesis Pencocokan Distribusi Probabilitas Normal Contoh 21 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak menunjukkan Hipotesis H 0 : Populasi X berdistribusi probabilitas normal H 1 : Populasi X tidak berdistribusi probabilitas normal Sampel n = 20 X = 24,45 s X = 2,020
Bab 11B Kumulasi pada sampel X Frek p Σp ,10 0, ,05 0, ,05 0, ,05 0, ,05 0, ,10 0, ,15 0, ,20 0, ,15 0, ,05 0, ,05 1,00
Bab 11B Kumulasi pada distribusi probabilitas normal Melalui nilai baku dan tabel fungsi distribusi pada distribusi probabilitas normal X z 21 1,18 0, 0,84 0, 0,50 0, 0,15 0, ,19 0, ,53 0, ,87 0, ,21 0, ,55 0, ,89 0, ,24 0,9875
Bab 11B Statistik uji X Σp T 21 0,10 0,1190 0, ,15 0,2005 0, ,20 0,3085 0, ,25 0,4404 0, ,30 0,5753 0, ,40 0,7019 0, ,55 0,8078 0, ,75 0,8869 0, ,90 0,9394 0, ,95 0,9706 0, ,00 0,9875 0,0125 T = 0,3019
Bab 11B Kriteria pengujian Taraf signifikansi 0,05 Pada tabel nilai kritis uji Liliefors T ( )(n) = 0,190 Tolak H 0 jika T > 0,190 Terima H 0 jika T 0,190 Keputusan Pada taraf signifikansi 0,05 tolak H 0
Bab 11B Contoh 22 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak adalah 16,7 17,4 18,1 18,2 18,8 19,3 22,4 22,5 24,0 24,7 25,9 27,0 35,1 35,8 36,5 37,6 39,8 42,1 43,2 46,2 Contoh 23 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak adalah
Bab 11B Contoh 24 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak pada contoh 18 Contoh 22 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak pada contoh 19 Contoh 22 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitas normal. Sampel acak pada contoh 20
Bab 11B Contoh 18 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitan normal. Sampel acak adalah Contoh 19 Pada taraf signifikansi 0,05, uji apakah populasi X berdistribusi probabilitan normal. Sampel acak adalah
Bab 11B Contoh 20 Pada taraf signifikansi 0,05, uji apakah populasi X (tinggi badan siswi SMA) berdistribusi probabilitan normal. Sampel acak adalah