BAB 5 FUNGSI Kuliah ke 3.

Slides:



Advertisements
Presentasi serupa
WINDA APRILIA AZIZAH ( ) Pendidikan Matematika
Advertisements

Hubungan Non-linear
Hubungan Linear
Fungsi MATEMATIKA EKONOMI
MATEMATIKA EKONOMI DAN BISNIS FUNGSI DALAM EKONOMI Materi - 2 Oleh:
Telaah kurikulum 1 Drs. DARMO
FUNGSI Adalah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.
Eni Sumarminingsih, SSi, MM
1c YOUR NAME Fungsi Linear Yeni Puspita, SE., ME.
KONSEP DASAR Fungsi dan Grafik
Pengantar Variabel dapat dibedakan menjadi 2, yaitu : Variabel kualitatif (sifatnya tidak tetap, berubah-ubah, yang tidak dapa diukur seperti cita rasa,
Fungsi Non Linear Yeni Puspita, SE., ME.
FUNGSI Cherrya Dhia Wenny, S.E..
BAB II FUNGSI.
FUNGSI PENGERTIAN DAN UNSUR-UNSUR FUNGSI JENIS-JENIS FUNGSI
Fungsi WAHYU WIDODO..
Fungsi MATEMATIKA EKONOMI PTE 4109, Agribisnis UB.
Hubungan Non-linear.
PERSAMAAN & FUNGSI KUADRAT.
BAB I LIMIT & FUNGSI.
Kelompok 2 Rizki Resti Ari ( ) Naviul Hasanah ( )
PERTEMUAN 3 FUNGSI.
MACAM-MACAM FUNGSI Matematika Ekonomi.
Fungsi Linear Pertemuan 3
FUNGSI NON LINIER Matematika Ekonomi , by Agus Sukoco, ST, MM
Aplikasi fungsi linier
Pertemuan 4 Fungsi Linier.
HUBUNGAN LINIER.
KONSEP DASAR Fungsi dan Grafik
pendekatan pengeluaran yang linear
Fungsi non linier SRI NURMI LUBIS, S.Si.
NILAI MUTLAK PERSAMAAN GARIS FUNGSI
BAB 6. FUNGSI DAN MODEL 6.1 FUNGSI
Fungsi MATEMATIKA EKONOMI.
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
Bab 1 Fungsi.
PENUGASAN Hitung x, jika: x = 3log 27 – 5log 25 2log 4x – 2log 4 = 2
MODUL 4. FUNGSI TUJUAN INSTRUKSIONAL KHUSUS MODUL IV
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
JENIS- JENIS PERTIDAKSAMAAN
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
MATEMATIKA I Vivi Tri Widyaningrum,S.Kom, MT.
Pertemuan 1 Sistem Bilangan Real Irayanti Adriant, S.Si, MT.
04 SESI 4 MATEMATIKA BISNIS Viciwati STl MSi.
Oleh : Irayanti Adriant, S.Si, M.T
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
Fungsi Persamaan, dan Pertidaksamaan Kuadrat
KONSEP DASAR Fungsi dan Grafik
Persamaan kuadrat Persamaan kuadrat adalah suatu persamaan polinomial berorde dua. Bentuk umum dari persamaan kuadrat adalah dengan Huruf-huruf a, b dan.
PERTIDAKSAMAAN OLEH Ganda satria NPM :
Fungsi Penerapan fungsi dalam bidang pertanian merupakan bagian yang sangat penting untuk dipelajari, karena model-model dalam matematika biasa disajikan.
Pertemuan ke-7 FUNGSI LINIER.
FUNGSI Adalah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain.
Selayang Pandang Nama : Titov Chuk’s Mayvani,SE.,ME
By : HAFMAHESTI RAHMI, S.SI, M.PD
Copyright © Cengage Learning. All rights reserved.
DAN PENERAPANNYA DALAM
MATEMATIKA EKONOMI Pertemuan 9: Fungsi Non-Linier Dosen Pengampu MK:
Selayang Pandang Nama : Titov Chuk’s Mayvani,SE.,ME
BAB 4 PERTIDAKSAMAAN.
FUNGSI DAN GRAFIKNYA.
MATEMATIKA EKONOMI FUNGSI LINIER (Pertemuan)
FUNGSI & GRAFIKNYA 2.1 Fungsi
PERTIDAKSAMAAN LINIER DAN PERTIDAKSAMAAN KUADRAT
Bab 1 Fungsi.
BEBERAPA GRAFIK FUNGSI (LANJUTAN)
Matematika Ekonomi DIREKTORAT JENDERAL SUMBER DAYA IPTEK DAN DIKTI KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI.
Fungsi MATEMATIKA EKONOMI PTE 4109, Agribisnis UB.
KALKULUS I Sistim Bilangan/fungsi
Bab 2 Fungsi Linier.
Transcript presentasi:

BAB 5 FUNGSI Kuliah ke 3

Pemahaman akan konsep fungsi sangat penting dalam mempelajari disiplin ilmu ekonomi, mengingat telaah-telaah ekonomi banyak bekerja dengan fungsi. Baik fungsi yang berbentuk persamaan maupun yang berbentuk pertidaksamaan. Yang dimaksud dengan fungsi berbentuk persamaan ialah fungsi yang ruas kiri dan ruas kanannya dihubungkan dengan tanda kesamaan (=), Sedangkan fungsi berbentuk pertidaksamaan ialah fungsi yang ruas kiri dan ruas kanannya dihubungkan dengan tanda ketidaksamaan (<, >,  atau ).

Pengertian dan Unsur-unsur Fungsi Fungsi ialah suatu bentuk hubungan matematis yang menyatakan hubungan ketergantungan (hubungan fungsional) antara satu variabel dengan variabel lain. 2. Variabel Variabel ialah unsur pembentuk fungsi yang mencerminkan atau mewakili faktor tertentu, biasanya dilambangkan dengan huruf kecil. Ada 2 macam variabel yaitu variabel bebas dan variabel terikat.

Variabel bebas (independent variable), ialah variabel yang nilainya tidak tergantung pada variabel lain Sedangkan variabel terikat (dependent variabel) ialah variabel yang nilainya tergantung pada variabel lain.

Koefisien dan konstanta Koefisien adalah bilangan atau angka yang terkait pada dan terletak di depan suatu variabel atau suatu fungsi Konstanta adalah bilangan atau angka yang (kadang-kadang) turut membentuk sebuah fungsi tetapi biasanya berdiri sendiri sebagai bilangan yang tidak terkait pada suatu variabel tertentu

B. Jenis-jenis fungsi Fungsi dapat digolongkan menjadi beberapa kelompok seperti skema berikut Fungsi Fungsi Aljabar Fungsi Non Aljabar (transenden) Fungsi Rasional Fungsi Irrasional f. Polinomial f. Linear f. Kwadrat f. Kubik f. bikuadrat f. pangkat f. Eksponensial f. Logaritmik f. Trigonometrik f. hiperbolik

Fungsi polinomial ialah fungsi yang mengandung banyak suku (polinom) dalam variabel bebasnya. Bentuk umum persamaan polinomial adalah : y = a0 + a1x + a2x2 + ……………. +anxn Pangkat tertinggi pada variabel suatu fungsi polinomial mencerminkan derajat polinomialnya, sekaligus juga mencerminkan derajat persamaan fungsi tersebut

Fungsi linier ialah fungsi polinomial khusus yang pangkat tertinggi dari variabelnya adalah satu, oleh karenanya sering juga disebut fungsi berderajat satu. Bentuk umum persamaan linier adalah : y = a0 + a1x Dimana: a0 : konstanta a1  0

Fungsi kuadrat ialah fungsi polinomial yang pangkat tertinggi dan variabelnya adalah pangkat dua, sering juga disebut fungsi berderajat dua. Bentuk umum persamaan kuadrat adalah : y = a0 + a1x + a2x2 Dimana: a0 : konstanta a1 dan a2 : konstanta a2  0

Fungsi berderajat n ialah fungsi yang pangkat tertinggi dari variabelnya adalah pangkat n (n = bilangan nyata). Bentuk umumnya: y = a0 + a1x + a2x2 + …………. + an-1xn-1 + anxn Dimana: an : konstanta a1 hingga an : koefisien an  0 Fungsi pangkat ialah fungsi yang variabel bebasnya berpangkat bilangan nyata bukan nol. Bentuk umumnya: y = x Dimana n bilangan nyata bukan nol

Fungsi eksponensial ialah fungsi yang variabel bebasnya merupakan pangkat dari suatu konstanta yang bukan nol. Bentuk umumnya : y = nx n > 0 Fungsi logaritmik ialah fungsi balik (inverse) dari fungsi eksponensial, variabel bebasnya merupakan bilangan logaritmik. Bentuk umumnya : y = nlog x

Fungsi trigonometrik dan fungsi hiperbolik ialah fungsi yang variabel bebasnya merupakan bilangan-bilangan goneometrik. Contoh persamaan trigonometrik : y = Sin 5x Contoh persamaan hiperbolik : y = arc cos 2x

Berdasarkan letak ruas variabel-variabelnya fungsi dapat dibedakan menjadi 2 jenis yaitu fungsi eksplisit dan fungsi implisit. Fungsi eksplisit ialah fungsi yang variabel bebas dan variabel terikatnya terletak di ruas yang berlainan. Fungsi implisit ialah fungsi yang variabel dan variabel terikatnya terletak di ruas yang sama.

Penggambaran fungsi Linier Setiap fungsi yang berbentuk eksplisit, atau bisa di eksplisitkan dapat disajikan secara grafik pada bidang sepasang sumbu silang (sistem koordinat). Penggambaran fungsi non linier Penggambaran fungsi non-linier tidak semudah fungsi linier. Meskipun prinsipnya secara umum sama, yakni dengan terlebih dahulu mencari sejumlah titik koordinat yang memenuhi persamaan fungsinya.

Penggal Penggal sebuah kurva adalah titik-titik potong kurva tersebut pada sumbu-sumbu koordinat. Penggal sumbu x dapat dicari dengan memisalkan y = 0 sehingga x dapat dihitung. Penggal sumbu y dapat dicari dengan memisalkan x = 0, sehingga y dapat dihitung. 2. Simetri Dua buah titik dikatakan simetrik terhadap sebuah garis apabila garis tersebut berjarak sama terhadap kedua titik tadi dan tegak lurus terhadap segmen garis yang menghubungkannya.

3. Perpanjangan Dalam menggambarkan kurva dari suatu persamaan f(x, y) = 0, pada umumnya kita membatasi diri hanya sampai pada nilai-nilai x dan y tertentu. Kita tidak tahu sampai seberapa jauh ujung-ujung kurva tersebut dapat diperpanjang, apakah sampai ke nilai-nilai x atau y tak hingga (E ) ataukah terbatas hanya sampai nilai-nilai x atau y tertentu.

4. Asimtot Asimtot suatu kurva adalah sebuah garis lurus yang jaraknya semakin jauh semakin dekat dengan salah satu ujung kurva tersebut. Jarak itu sendiri tidak akan menjadi nol, atau dengan kata lain, garis lurus dan kurva tadi tidak sampai berpotongan Secara umum garis y = a + bx merupakan asimtot kurva y = f(x) jika f(x) senantiasa lebih kecil atau senantiasa lebih besar dari a + bx dan semakin mendekati a + bx apabila x dan y diperpanjang tanpa batas. Dengan notasi limit, hal ini dituliskan sebagai f(x) a + bx apabila x, y 

5. Faktorisasi Faktorisasi fungsi maksudnya ialah menguraikan ruas utama fungsi tersebut menjadi bentuk perkalian ruas-ruas utama dari dua fungsi yang lebih kecil