BAB I SISTEM BILANGAN.

Slides:



Advertisements
Presentasi serupa
BILANGAN KOMPLEKS.
Advertisements

Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -III” 2.
KALKULUS - I.
ALJABAR.
Operasi Hitung Bentuk aLjabar …
Dosen : Subian Saidi, S.Si, M.Si
MATHEMATICS FOR JUNIOR HIGH SCHOOL
PERTEMUAN 2.
Matematika Dasar Oleh Ir. Dra. Wartini, M.Pd.
Pertidaksamaan Kelas X semester 1 SK / KD Indikator Materi Contoh
Sudaryatno Sudirham Bilangan Kompleks Klik untuk melanjutkan.
KALKULUS I SRI REDJEKI.
KALKULUS I NI KETUT SARI.
MODUL KULIAH MATEMATIKA TERAPAN
Sistem Bilangan Real MA 1114 Kalkulus 1.
KELOMPOK 6 Nama Kelompok : 1.Ratih Dwi P ( )
STRUKTUR ALJABAR 1 PROGRAM STUDI PENDIDIKAN MATEMATIKA
MATEMATIKA BISNIS HIMPUNAN.
BAB 2 SISTEM BILANGAN.
BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK
Sistem Bilangan Riil.
SISTEM BILANGAN RIIL Pertemuan ke -2.
BAB I SISTEM BILANGAN.
BAB III FUNGSI.
MATEMATIKA BISNIS HIMPUNAN.
MATEMATIKA BISNIS by : Dien Novita
Assalamualaikum Wr. Wb.
SISTEM BILANGAN MATEMATIKA EKONOMI.
Standar Kompetensi : Memecahkan Masalah Berkaitan Dengan Konsep Operasi Bilangan Real Kompetensi Dasar : Menerapkan Operasi Pada Bilangan Real Indikator.
KALKULUS 1 IKA ARFIANI, S.T..
Pertidaksamaan Kuadrat
MATEMATIKA DASAR.
PERTEMUAN 1.
Pertemuan 2 (Bilangan Asli) .::Dra. Endang M. Kurnianti::.
Bilangan Real Himpunan bilangan real adalah himpunan bilangan yang merupakan gabungan dari himpunan bilangan rasional dan himpunan bilangan irasional Himpunan.
Disusun oleh : Ummu Zahra
BILANGAN BULAT Bilangan Bulat Operasi Hitung pada Bilangan Bulat
Operasi Hitung Bentuk aLjabar …
MATEMATIKA 4 TPP: 1202 Disusun oleh
BILANGAN BULAT.
BILANGAN BULAT.
SISTEM BILANGAN MATEMATIKA EKONOMI.
Kania Evita Dewi Sistem Bilangan Real.
Bilangan bulat Definisi dan operasi.
MATEMATIKA 3 TPP: 1202 Disusun oleh Dr. Ir. Dwiyati Pujimulyani,MP
1. SISTEM BILANGAN REAL.
PRA – KALKULUS.
Sistem Bilangan Riil.
Bilangan Asli Bilangan Bulat Bilangan rasional Bilangan Riil.
Pertemuan 1 Sistem Bilangan Real Irayanti Adriant, S.Si, MT.
MATRIKULASI KALKULUS.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
Pertemuan 2 (Himpunan Bilangan) .::Erna Sri Hartatik::.
BILANGAN.
Operasi Hitung Bentuk aLjabar …
Pertemuan 2 (Bilangan Asli) .::Dra. Endang M. Kurnianti::.
1 1.1 Sistem Bilangan BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK Himp Bil. real Himp Bil. Immaginair Himp Bil. Irrasional Himp Bil. Rasional Himp Bil.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
Materi Kalkulus 1 Struktur Bilangan Ketidaksamaan Relasi dan Fungsi
MATEMATIKA I (KALKULUS)
BAB 4 PERTIDAKSAMAAN.
SISTEM BILANGAN REAL.
Sifat Sifat Bilangan Real
Sistem Bilangan Riil.
Materi perkuliahan sampai UTS
Dosen : Dra.Rustina & Fevi Novkaniza, M.Si
BAB 1. SELANG, KETAKSAMAAN DAN NILAI MUTLAK
KALKULUS - I.
ALJABAR.
Transcript presentasi:

BAB I SISTEM BILANGAN

SISTEM BILANGAN RIIL Sistem bilangan riil adalah himpunan bilangan riil dan operasi aljabar yaitu operasi penjumlahan, pengurangan, perkalian dan pembagian. Biasanya bilangan riil dinyatakan dengan lambang R.

Bilangan irrasional (I) ril (R) Bilangan irrasional (I) rasional (Q) pecahan desimal terbatas bulat ( J) desimal berulang cacah (W) negatif asli (N) nol

Himpunan bilangan asli (N) N = { 1, 2, 3, … } Himpunan bilangan cacah (W) W = {0, 1, 2, 3, … } Himpunan bilangan bulat (J) J = {…, -3, -2, -1, 0, 1, 2, 3, … } Himpunan bilangan rasional (Q) Himpunan bilangan rasional adalah himpunan bilangan yang mempunyai bentuk p/q atau bilangan yang dapat ditulis dalam bentuk p/q, dimana p dan q adalah anggota bilangan bulat dan q  0 Q =

GARIS BILANGAN RIIL Garis bilangan ril adalah tempat kedudukan titik-titik, dimana setiap titik menunjukkan satu bilangan ril tertentu yang tersusun secara terurut.

HUKUM-HUKUM BILANGAN RIIL Operasi penjumlahan dan perkalian bilangan riil mematuhi hukum-hukum seperti yang disebutkan berikut ini : Jika a dan b adalah bilangan-bilangan riil maka berlaku : ( i ) a + b adalah bilangan riil ( ii ) a . b adalah bilangan riil ( iii ) a + b = b + a hukum komutatif penjumlahan ( iv) a . b = b .a hukum komutatif perkalian

HUKUM-HUKUM BILANGAN RIIL Jika a, b dan c adalah bilangan-bilangan riil maka berlaku : ( v ) ( a + b ) + c = a + ( b + c ) hukum asosiatif penjumlahan ( vi ) ( ab ) c = a ( bc) hukum asosiatif perkalian ( vii ) a ( b + c ) = ab + ac hukum distributif ( viii ) a + 0 = 0 + a = a hukum penjumlahan nol ( ix ) a . 1 = 1 . a = a hukum perkalian satu ( x ) a . 0 = 0 . a = 0 hukum perkalian nol ( xi ) a + ( - a ) = -a + a hukum invers penjumlahan ( xii ) a . ( 1/a ) = 1 , a ≠ 0 hukum invers perkalian

BILANGAN KOMPLEKS Bilangan kompleks adalah bilangan yang terdiri dari unsur bilangan riil dan imajiner. Bentuk umum bilangan kompleks adalah z = a + ib. Komponen a disebut bagian riil dan ditulis Re(z) dan b adalah bagian imajiner dan ditulis Im(z). Bilangan a dan b adalah bilangan-bilangan riil sedangkan i adalah bilangan imajiner yang besarnya adalah

SIFAT-SIFAT BILANGAN KOMPLEKS Misal z1 = x1 + iy1 dan z2 = x2 + iy2, maka berlaku : z1 = z2  x1 = x2 dan y1 = y2 sifat kesamaan z1 + z2 = (x1 + x2) + i(y1 + y2) sifat penjumlahan z1 - z2 = (x1 - x2) + i(y1 - y2) sifat pengurangan z1 . z2 = (x1x2 - y1y2) + i(x1y2 + x2y1)sifat perkalian

KONJUGAT Bila terdapat suatu bilangan kompleks z = x + iy, maka konjugat bilangan kompleks tersebut adalah = x – iy. Jika bilangan kompleks berbentuk z = x – iy, maka konjugatnya adalah = x + iy.

Perkalian Bilangan Kompleks dengan Konjugatnya z = (x + iy)( x – iy) = x2 - ixy + ixy – i2y2 = x2 + y2 Perkalian bilangan kompleks dengan konjugatnya menghasilkan bilangan ril.

Pembagian Dua Buah Bilangan Kompleks Untuk melakukan operasi pembagian dua buah bilangan kompleks pertama-tama kita kalikan pembilang dan penyebutnya (dalam hal ini z1 dan z2 ) dengan konjugat z2. Sehingga didapat :  

PERTIDAKSAMAAN Pertidaksamaan adalah salah satu bentuk pernyataan matematika yang mengandung satu peubah atau lebih yang dihubungkan oleh tanda-tanda < , > , ≤ atau ≥. Ditinjau dari jumlah dan pangkat peubah maka pertaksamaan dapat dibagi menjadi pertidaksamaan linier dengan satu peubah, pertidaksamaan linier dengan peubah banyak dan pertidaksamaan kuadrat.

SIFAT-SIFAT PERTIDAKSAMAAN

SIFAT-SIFAT PERTIDAKSAMAAN

SELANG ( INTERVAL ) Selang adalah himpunan bagian dari bilangan ril yang mempunyai sifat relasi tertentu. Jika batas-batasnya merupakan bilangan ril maka dinamakan selang hingga. Jika bukan bilangan ril maka dinamakan selang tak hingga (). Lambang  menyatakan membesar tanpa batas dan lambang - menyatakan mengecil tanpa batas.

PERTIDAKSAMAAN LINIER SATU PEUBAH Pertidaksamaan linier satu peubah adalah pernyataan matematika yang memuat satu peubah yang mempunyai pangkat satu dan dihubungkan dengan tanda-tanda <, >, ≤ atau ≥. Bentuk umum dari pertidaksamaan linier satu peubah adalah :ax + b (?) 0, dimana a dan b adalah konstan, sedangkan (?) adalah salah satu dari tanda-tanda <, >, ≤ atau ≥.