MULTIVARIATE ANALYSIS

Slides:



Advertisements
Presentasi serupa
KONSEP DASAR STRUCTURAL EQUATION MODEL (SEM)
Advertisements

ANALISIS JALUR (Path Analysis)
“Analisa Multivariat”
UJI HIPOTESIS.
METODE RISET AGRIBISNIS
STATISTIKA MULTIVARIAT MANOVA
SEM (STRUCTURAL EQUATION MODELING) MAGISTER TEKNIK INDUSTRI
ANALISIS FAKTOR.
MODEL PERSAMAAN STRUKTURAL (STRUCTURAL EQUATION MODEL - SEM)
(Sumber: Dr Solimun, MS, 2003 )
ANALISIS DATA KATEGORI
ANALISIS FAKTOR.
ANALISIS JALUR ( PATH ANALYSIS ).
Statistic Multivariate
Kuisoner Tidak Layak Diolah Karena
BAB XI REGRESI LINEAR Regresi Linear.
BETYARNINGTYAS CYNTHIA LA SARIMA MUH Tabrani Nuri NURWAHIDA VIEVIEN
ANALISIS REGRESI DAN KORELASI
ANAILSIS REGRESI BERGANDA
PENGUJIAN HIPOTESIS ASOSIATIF
ANALISIS JALUR (PATH ANALYSIS)
FUNGSI DISKRIMINAN 2 KELOMPOK Mukminati An’amallah K Nike Putri W K
ANALISIS KUANTITATIF DALAM PENELITIAN GEOGRAFI
FUNGSI DISKRIMINAN 3 KELOMPOK
KORELASI DAN REGRESI LINEAR SEDERHANA
STRUCTURAL EQUATION MODELLING
Analisis Diskriminan dan Regresi Logistik merupakan tehnik statistik
REGRESI Oleh : Herry Yulistiyono, MSi.
Pengantar Penggunaan banyak variabel dalam penelitian seringkali tak terelakkan, terutama dalam bidang sosial. Korelasi antar variabel-variabel berjumlah.
Probabilitas dan Statistika
LOGISTIC REGRESSION Logistic regression adalah regressi dengan binary untuk variabel dependen. Variabel dependen bersifat dikotomi dengan mengambil nilai.
Pengantar SEM Fauziyah, SE., M.Si.
Pelatihan Metode Penelitian Partial Least Square (PLS)
PENGANTAR STATISTIKA LANJUTAN
Presented by Kelompok 7 Mirah Midadan Richard Pasolang Reski Tasik
ANALISIS JALUR MODUL 12 Analisis Jalur.
FACTOR ANALYSIS & CLUSTER ANALYSIS
METODOLOGI PENELITIAN SESI 11 Korelasi dan REGRESI Analisis Faktor
Pertemuan ke 14.
EKONOMETRIKA Pertemuan 7: Analisis Regresi Berganda Dosen Pengampu MK:
Pertemuan Ke-7 REGRESI LINIER BERGANDA
Asumsi Klasik (Multikolinieritas)
Analisis Regresi Berganda
MODEL PERSAMAAN STRUKTURAL (STRUCTURAL EQUATION MODEL - SEM)
Pertemuan ke 14.
Analisis Komponen Utama
Analisis regresi (principle component regression)
Kuliah ke-1 Statistik Inferensial
Dr. Gatot Sugeng Purwono, M.S
MUHAMMAD HAJARUL ASWAD
DASAR ANALISIS MULTIVARIATE.
Single and Multiple Regression
ANALISIS MULTIVARIATE
MULTIVARIATE ANALYSIS
Single and Multiple Regression
ANALISIS JALUR (PATH ANALYSIS)
ANALISIS REGRESI & KORELASI
Fungsi diskriminan linear, klasifikasi diskret dan regresi
Single and Multiple Regression
ANALISIS JALUR ( PATH ANALYSIS ).
Pendugaan Parameter Regresi Logistik
Structural Equation Modeling
Review Aljabar Matriks
BAB VIII REGRESI &KORELASI BERGANDA
Matriks dan Regresi TOTOK MUJIONO.
Principal Components Analysis (Pendekatan Sampel)
Multivariate Analysis
Tahapan Belajar Rumus yang Sistematis (Didasarkan frekuensi penggunaan dalam riset skripsi / tesis / disertasi)
Analisis Faktor Siti Ulfa Nabila ›Analisis faktor merupakan salah satu dari analisis ketergantungan (interdependensi) antar variabel. ›Prinsip.
PATH ANALYSIS. Analisa Jalur adalah suatu perluasan dari model regresi, yang digunakan untuk menguji cocok matriks korelasi terhadap dua atau lebih yang.
Transcript presentasi:

MULTIVARIATE ANALYSIS ANALISIS PEUBAH GANDA MULTIVARIATE ANALYSIS Oleh: Prof.Dr.Ir.Soemarno,M.S

Analisis multivariate MULTIVARIATE ANALYSIS Obyek Pengamatan Variabel X4 Variabel X1 Variabel X2 Variabel X3 Variabel Xn Multi-Variabel Metode analisis statistik yang melibatkan multi-variabel secara simultan Analisis multivariate MULTIVARIATE ANALYSIS

Multivariate Analysis (MA): Metode analisis yang berkenaan dengan sejumlah besar variabel yang datanya diperoleh secara simultan dari setiap obyek pengataman Hubungan-hubungan antar variabel secara simultan ( = Analisis Peubah Ganda) Proses perhitungannya sangat kompleks Dalam proses perhitungannya menggunakan pendekatan matriks Determinan Matriks, Pangkat Matriks, Matriks Kebalikan, Eigen Value, Eigen Vector, dll.

MATRIKS : 4 7 2 A = 2 5 6 9 3 7 Matriks Kovarians: Matriks yang unsur-unsurnya berupa varian (ragam) dan kovarian (peragam) dari sekumpulan variabel. Lambangnya S. Diagonalnya berupa varians (ragam) dari setiap variabel, sedangkan unsur lainnya berupa kovarians (peragam) antar variabel. Matriks S bersifat simetris atau setangkup Matriks Korelasi: Matriks yang unsur-unsurnya berupa koefisien korelasi dari sekumpulan variabel. Lambangnya R . Diagonalnya berupa angka-angka 1, sedangkan unsur lainnya berupa koefisien korelasi antar variabel Matriks ini bersifat Simetris atau Setangkup

EIGEN VALUE & EIGEN VECTOR MATRIKS : EIGEN VALUE & EIGEN VECTOR Misalnya adadua persamaan linear: 2 X1 + 5 X2 = 2 . 4 X1 + 10 X2 = 4 dalam bahasa matriks ditulis sbb: Ax = y x = x1 y = 2 A = 2 5 A : matriks x2 4 4 10 transformasi linear Jika A x =  x, dimana  adalah konstante, maka vektor jawab x yang memenuhi hubungan ini untuk nilai x tertentu disebut Eigen Vector (Vektor Ciri) dan  disebut Eigen Value (Akar Ciri) Kalau Matriks A bersifat simetris, maka akar ciri dari Aadalah riil danmemiliki vektor ciri yang saling bebas (ortogonal)

KLASIFIKASI APG: APG untuk analisis identifikasi, prediksi, eksplorasi, deskripsi: 1. Principle Component Analysis (PCA) 2. Factor Analysis 3. Cluster Analysis 4. MDS 5. Correspondence Analysis APG untuk analisis pembandingan: 1. T2 Hotelling 2. MANOVA / MANCOVA 3. Cluster Analysis APG untuk analisis hubungan antar variabel: 1. Analisis Regresi Peubah Ganda 2. Analisis Jalur (Path Analysis) 3. SEM (Structural Equation Modelling) 4. Korelasi Kanonik 5. Analisis Korespondensi 6. Multidimentional Scalling 7. Analisis Diskriminan 8. Logistic Model 9. Logit-Probit

KLASIFIKASI APG: berdasarkan Pola Ketergantungannya APG untuk analisis Dependensi Satu kelompok variabel dipengaruhi (atau bergantung, atau mempengaruhi) kelompok variabel lainnya. 1. Banyak hubungan, banyak variabel dependent dan banyak variabel independent: MS, AP, SEM 2. Satu hubungan, banyak variabel dependent, dan satu (banyak) variabel independent: KANONIK, MANOVA 3. Satu hubungan, satu variabel dependent, dan satu (banyak) variabel independent: RB, AD, Logit-Probit APG untuk analisis Interdependensi: Saling ketergantungan antar variabel, atau antar kasus, antar obyek, antar kategori dari variabel 1. Analisis saling ketergantungan antar variabel: PCA, FAktor 2. Analisis Kemiripan antar kasus: Cluster 3. Analisis kemiripan antar obyek atau kategori dari variabel Multidimensional, Korespondensi

MODEL STRUKTURAL = Sistem Persamaan Simultan Input Data: Data dari variabel observasi atau skor dari indikator variabel latent. Data yg dianalisis data mentah, bukan data standardize Metode Estimasi: Model Rekursif = Metode OLS Exact identified = Metode ILS Over identified = Metode TSLS Under identified = Diberi kendala, shg menjadi Exactidentified Output: Berupa model, setara dengan hasil analisis Regresi Kegunaan: Alat untuk eksplanasi, atau prediksi, setara dengan REGRESI

ANALISIS PATH = Analisis Jalur, Analisis Lintas, Sidik Lintas Input Data: Data dari variabel observasi atau skor dari indikator variabel latent. Data yg dianalisis data standardize Metode Estimasi: Modelnya harus rekursif, sehingga dapat digunakan metode OLS Output: Model Lintasan atau Jalur-Jalur, pengaruh Kegunaan: Untuk menentukan variabel mana yang berpengaruh dominan dan jalur mana yang berpengaruh lebih kuat

SEM = Sructural Equation Modelling Input Data: Data dari variabel observasi atau skor dari indikator variabel latent. Data yg dianalisis berupa matriks kovarians atau matriks korelasi. Metode Estimasi: Maximum Likelihood (ML), TSLS, PLS Output Model struktural, Model Lintasan Pengaruh Kegunaan: Merupakan gabungan kegunaan antara analisis faktor, Analisis Path, dan Analisis Regresi

ANALISIS KORELASI KANONIK Keeratan hubungan antara kelompok variabel dgn kelompok variabel lainnya Input Data: Data yg digunakan adalah data hasil pengukuran (metrik) Metode Estimasi: Konsep Eigen Value & Eigen Vector Output: Koefisien Korelasi Kanonik Kegunaan: Alat untuk eksplanasi ke-eratan hubungan antar kelompok variabel

Konsep dekomposisi komponen ragam (varians) MANOVA = Menguji perbedaan variabel dependent pada kategori-kategori dari variabel independent. Kalau adavariabel penyerta dapat digunakan MANCOVA Input Data: Untuk variabel dependent: data hasil pengukuran (metrik) Untuk variabel independent: Data kategori (non-metrik) Metode Estimasi: Konsep dekomposisi komponen ragam (varians) Output: Tabel MANOVA Kegunaan: Untuk mengetahui apakah secara simultan dari sekumpulan variabel dependent terjadi perbedaan yang signifikan.

REGRESI BERGANDA = Regresi Linear Berganda Input Data: Raw data, bukan standardize data Variabel dependent: data metrik Variabel independent: data metrik dan/atau data non-metrik Metode Estimasi: OLS Output: Model atau persamaan regresi berganda Kegunaan: Alat untuk eksplanasi atau alat untuk prediksi, Prediksi nilai variabel dependent kalau nilai variabel independent diketahui

Konsep Eigen Value dan Eigen Vector ANALISIS DISKRIMINAN Input Data: Raw data, bukan standardize data Variabel dependent: kategori n(non-metrik) Variabel independent: Metrik dan/atau non-metrik Metode Estimasi: Konsep Eigen Value dan Eigen Vector Output: Fungsi deskriminan Kegunaan: Alat untuk prediksi alternatif, pengelompokkan obyek, faktor determinan Alat untuk menentukan variabel mana yang merupakan pembeda terkuat

MODEL LOGIT, PROBIT, TOBIT, GOMPIT, LPM Input Data: Raw data, bukan standardize data Variabel dependent: kategori n(non-metrik) Variabel independent: Metrik dan/atau non-metrik Metode Estimasi: OLS Output: Model atau persamaan Kegunaan: Alat untuk eksplanasi odd-ratio Alat untuk prediksi peluang suatu kategori dari variabel dependent kalau nilai variabel independen diketahui

PRINCIPLE COMPONENT ANALYSIS: PCA Input Data: Matriks kovarians: kalau semua variabel punya satuan yg sama dan homogen, dipakai raw data Matrik korelasi: kalau satuannya tidak sama, standardize data Metode Estimasi: Konsep Eigen Value dan Eigen Vector Output: Variabel komposit atau disebut Dimensi, Komponen Utama Nilai dari variabel komposit Kegunaan: Eksplorasi Dimensi yg terkandung dalam sekumpulan variabel Mendapatkan skor dari Komponen Utama Mapping objects Clustering objects Menghilangkan multikolinearitas pd regresi berganda

FACTOR ANALYSIS Kegunaan: Input Data: Raw data atau standardize data, seluruh variabel mempunyai “common factor” Metode Estimasi: Konsep Eigen value & Eigen vector Output: Faktor hasil ekstraksi, Skor dari faktor ini (data dari variabel laten). Variabel laten ini juga disebut DIMENSI Kegunaan: Analisis faktor konfirmatori: Mencari dimensi yg terkandung dalam sekumpulan variabel (atau faktor) Mapping objects Clustering object Mendapatkan data dari suatu DIMENSI atau Variabel Laten

ANALISIS GEROMBOL = CLUSTER ANALYSIS Analisis Gerombol hierarkhis: Jumlah gerombol belum diketahui Analisis tidak-hierarkhis: Jumlah gerombol telah diketahui INPUT DATA: Raw data atau standardize data Data metrik atau non metrik Metode Analisis: K-mean atau Agromeratif Output: Kelompok-kelompok obyek Kegunaan: Identifikasi banyaknya kelompok (Analisis hierarkhis) Prediksi anggota setiap kelompok (gerombol) Identifikasi karakteristik gerombol.

MULTIDIMENTIONAL SCALLING Input data: Pendekatan komposisional: Data hasil pengukuran variabel Pendekatan dekomposisional: Data jarak antar obyek Estimasi: Metode ALSCAL. Output: Peta, mapping, obyek kajian KEGUNAAN: Positioning obyek Clustering obyek Identifikasi karakter setiap obyek atau kelompok obyek.

ANALISIS KORESPONDENSI INPUT DATA: Tabel Frekuensi METODE PERHITUNGAN: Konsep Eigen value dan Eigen vektor OUTPUT: Berupa peta (mapping) kategori dari variabel KEGUNAAN: Positioning kategori variabel Clustering kategori dari beberapa variabel Identifikasi profil suatu variabel berkaitan dengan kategori variabel lainnya.