GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN

Slides:



Advertisements
Presentasi serupa
GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN
Advertisements

Side-Angle-Side (S.A.S) Angle-Side-Angle (A.S.A)
Oleh Otong Suhyanto, M.Si
MELUKIS SEGITIGA.
MULTIMEDIA PEMBELAJARAN MATEMATIKA MATERI “MELUKIS SUDUT”
GARIS SINGGUNG PERSEKUTUAN DUA LINGKARAN
L O A D I N G
BAB 9 DIMENSI TIGA.
LINGKARAN DALAM DAN LINGKARAN LUAR
LINGKARAN.
GARIS SINGGUNG LINGKARAN OLEH: SULISTYANA, S.Pd SMP N 1 WONOSARI.
LINGKARAN DALAM, LINGKARAN LUAR, DAN LINGKARAN SINGGUNG SUATU SEGITIGA
S s s þ , Ó í Ó ¡ . Ù MATEMATIKA WAYAN SUBADRE, S.Pd.
GEOMETRI RUANG (DIMENSI 3)
Media Pembelajaran Berbasis Teknologi Informasi & Komunikasi
GESERAN ( TRANSLASI ) DALAM MEMBAHAS TRANSLASI DIPERLUKAN BEBERAPA SIFAT DAN PENGERTIAN VEKTOR VEKTOR ADALAH BESARAN YANG MEMPUNYAI BESAR DAN ARAH SECARA.
Garis singgung lingakaran
PEMBELAJARAN Matematika INTERAKTIF
Lingkaran Dalam & Lingkaran Luar.
Macam-Macam Bangun Ruang
GARIS SINGGUNG LINGKARAN.
Teknologi Dan Rekayasa TECHNOLOGY AND ENGINERRING
Konstruksi Geometris.
Perhatikan gbr. berikut :
Konstruksi geometri Pertemuan ke-3
MENGGAMBAR TEKNIK KONSTRUKSI GEOMETRIS MODUL KE EMPAT BELAS
GARIS-GARIS ISTIMEWA DALAM SEGITIGA
Segitiga dan Segiempat
Teknologi Dan Rekayasa TECHNOLOGY AND ENGINERRING
Bangun datar sederhana
GEOMETRI ●.
Garis Singgung Persekutuan
Lingkaran dan Lingkaran Singgung
GARIS DAN SUDUT Oleh: Kelompok 2 (kelas A)
Menggambar dan Mengukur sudut
KEDUDUKAN GARIS TERHADAP BIDANG
PERPUTARAN ( ROTASI ) Selanjutnya P disebut pusat rotasi dan  disebut sudut rotasi.  > 0 jika arah putar berlawanan arah putaran jarum jam.
GARIS SINGGUNG PERSEKUTUAN DUA LINGKARAN Everyone can be everything
Teknologi Dan Rekayasa TECHNOLOGY AND ENGINERRING
LINGKARAN Oleh Purwani.
GARIS SINGGUNG LINGKARAN
VENISSA DIAN MAWARSARI, M.Pd
LINGKARAN By Gisoesilo Abudi, S.Pd Powerpoint Templates.
GARIS SINGGUNG LINGKARAN
LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA
MELUKIS GARIS TEGAK LURUS
MELUKIS GARIS TEGAK LURUS
a. Pythagoras a2 = b2 + c2 b2 = a2 - c2 c2 = a2 - b2 b a c
TUJUAN Merumuskan indikator dari SK-KD yang sesuai.
TUGAS MATEMATIKA PEMINATAN
LINGKARAN.
Lingkaran dalam Segitiga
MELUKIS GARIS TEGAK LURUS
SIMBOL KONSTRUKSI, TANAH, BATU, BETON
Firda ( ) Yuliana Dwi Wijayanti ( )
GAMBAR TEKNIK KELAS X OLEH ISHRI. MATERI Gambar konstruksi geometrisGambar konstruksi geometris:  Konstruksi garis Konstruksi garis  Konstruksi sudut.
Ning masitah Yesi priska Zahrotun T
Menggambar Geometris Gatot S ( ). Menggambar Bujur Sangkar Tentukan lingkaran dengan titik pusat M. Tarik garis tengah memotong titik A dan.
SIFAT – SIFAT GARIS DAN SUDUT PADA SEGITIGA
TIA 102 Menggambar Teknik Pekan ke-2: Gambar Dasar Geometri
Oleh Otong Suhyanto, M.Si
MELUKIS GARIS TEGAK LURUS
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
C. Dalil-Dalil pada Segitiga
MELUKIS GARIS TEGAK LURUS
Peta Konsep. Peta Konsep C. Dalil-Dalil pada Segitiga.
MELUKIS GARIS TEGAK LURUS
 Memahami macam-macam sudut Menerapkan Prosedur Gambar Bentuk – Bentuk Bidang A. Menggambar Sudut 1. Buat garis lurus AB sembarang AB.
G A R I S S I N G G U N G P E R S E K U T U A N D U A L I N G K A R A N O l e h : I N D R A S A K T I S I R E G A R, S. P d. I.
Konstruksi Geometris. Untuk menggambar bentuk-bentuk geometri diperlukan ketrampilan dasar menggambar dengan menggunakan penggaris, jangka, segitiga,
Transcript presentasi:

GARIS SINGGUNG LINGKARAN GARIS SINGGUNG LINGKARAN DAN CARA MELUKISNYA OLEH MOH HASAN ROSIDI S.Si. Copyleft www.dunia-matematika.blogspot.com

PENGERTIAN GARIS SINGGUNG LINGKARAN POSISI GARIS TERHADAP LINGKARAN Perhatikan gambar berikut ini! O h f g A B C i Garis f memotong lingkaran di 2 titik yaitu A dan B dan tegak lurus garis i. Garis g memotong lingkaran di 1 titik yaitu titik C dan tegak lurus garis i. Garis g ini dikatakan menyinggung lingkaran di titik C. Garis h tidak memotong lingkaran Jadi, garis singgung lingkaran adalah garis yang memotong lingkaran di satu titik dan berpotongan tegak lurus dengan jari-jari di titik singgungnya.

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Pada Lingkaran Perhatikan lingkaran di samping! O A Untuk menggambar garis singgung lingkaran yang melalui titik A, caranya sebagai berikut.

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Pada Lingkaran a. Lukis garis OA dan perpanjangannya D b. Lukis busur lingkaran yang berpusat di titik A sehingga memotong garis OA, misal di titik B dan C B A C O c. Lukis busur lingkaran yang berpusat di titik B dan C sehingga saling berpotongan di titik D dan E E d. Hubungkan titik D dan E. Garis DE merupakan garis singgung lingkaran di titik A. Melalui satu titik pada lingkaran hanya dapat dibuat satu garis singgung pada lingkaran tersebut

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Di Luar Lingkaran O A Perhatikan lingkaran di atas! Titik A di luar lingkaran Untuk melukis garis singgung lingkaran yang melalui titik A, caranya sebagai berikut.

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Di Luar Lingkaran B O A C a. Hubungkan titik O dan titik A b. Lukis busur lingkaran yang berpusat di titik O dan A sehingga saling berpotongan di titik B dan C

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Di Luar Lingkaran E B D O A F C c. Hubungkan BC sehingga memotong OA, misal di titik D d. Lukis lingkaran berpusat di titik D dan berjari-jari OD = DA sehingga memotong lingkaran pertama di dua titik. Misal di titik E dan F.

MELUKIS GARIS SINGGUNG Melukis Garis Singgung Melalui Suatu Titik Di Luar Lingkaran E B D O A F C e. Hubungkan titik A dengan titik E dan titik A dengan titik F. Garis AE dan EF merupakan dua garis singgung lingkaran melalui titik A di luar lingkaran. Melalui satu titik di luar lingkaran dapat dibuat dua garis singgung pada lingkaran tersebut

PANJANG GARIS SINGGUNG Panjang Garis Singgung Melalui Suatu Titik Di Luar Lingkaran O A B C   Dua garis singgung lingkaran yang melalui titik di luar lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung tersebut membentuk bangun layangl-ayang. Layang-layang yang terbentuk dari dua garis singgung lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung tersebut disebut layang-layang garis singgung.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: R L1 L2 r P,Q L2 terletak di dalam L1 dengan P dan Q berimpit, sehingga panjang PQ = 0. Dalam hal ini dikatakan L2 terletak di dalam L1 dan konsentris (setitik pusat).

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L1 L2 P Q L2 terletak di dalam L1 dan PQ < r < R. Dalam hal ini dikatakan L2 terletak di dalam L1 dan tidak konsentris.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L1 L2 P Q L2 terletak di dalam L1 dan PQ = r = ½ R, sehingga L1 dan L2 bersinggungan di dalam.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L1 L2 P Q L1 berpotongan dengan L2 dan r < PQ < R.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L2 L1 P Q L1 berpotongan dengan L2 dan r < PQ < R + r.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L2 L1 P Q L1 terletak di luar L2 dan PQ = R + r, sehingga L1 dan L2 bersinggungan di luar.

KEDUDUKAN DUA LINGKARAN Jika terdapat dua lingkaran masing-masing lingkaran L1 berpusat di P dengan jari-jari R dan lingkaran L2 berpusat di Q dengan jari-jari r di mana R > r maka kedudukan lingkaran tersebut dapat dibedakan sebagai berikut: L2 L1 P Q L1 terletak di luar L2 dan PQ > R + r, sehingga L1 dan L2 saling terpisah.

GARIS SINGGUNG PERSEKUTUAN Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Kedua lingkaran di atas tidak memiliki garis singgung

GARIS SINGGUNG PERSEKUTUAN Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Kedua lingkaran di atas memiliki satu garis singgung

GARIS SINGGUNG PERSEKUTUAN Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Kedua lingkaran di atas memiliki dua garis singgung

GARIS SINGGUNG PERSEKUTUAN Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Kedua lingkaran di atas memiliki tiga garis singgung

GARIS SINGGUNG PERSEKUTUAN Garis singgung persekutuan adalah garis yang menyinggung dua buah lingkaran sekaligus. Kedua lingkaran di atas memiliki empat garis singgung

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam L1 L2 P Q R r Lukis lingkaran L1 berpusat di titik P dengan jari-jari R dan lingkaran L2 berpusat di titik Q dengan jari-jari r (R > r). Hubungkan titik P dan Q.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam S L1 L2 P R r Q R Lukis busur lingkaran berpusat di titik P dan Q sehingga saling berpotongan di titik R dan S.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam S L1 L2 P R T r Q R Hubungkan titik R dengan titik S sehingga memotong garis PQ di titik T.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam S L1 L2 P R T r Q R Lukis busur lingkaran berpusat di titik T dan berjari-jari PT.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam V S L1 L2 P R T r Q R U Lukis busur lingkaran pusat di titik P, jari-jari R + r sehingga memotong lingkaran berpusat titik T di titik U dan V.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam V S L1 C L2 P R T r Q A R U Hubungkan titik P dan U sehingga memotong lingkaran L1 di titik A. Hubungkan pula titik P dan V sehingga memotong lingkaran L1 di titik C.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam V S L1 C D L2 P R T r Q B A R U Lukis busur lingkaran pusat di titik A, jari-jari UQ sehingga memotong lingkaran L2 di titik B. Lukis pula busur lingkaran pusat di titik C jari-jari VQ sehingga memotong lingkaran L2 di titik D.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Dalam V S L1 C B L2 P R T r Q D A R U Hubungkan titik A dengan titik B dan titik C dengan titik D. Garis AB dan CD merupakan garis singgung persekutuan dalam lingkaran L1 dan L2.

GARIS SINGGUNG PERSEKUTUAN Panjang Garis Singgung Persekutuan Dalam   P Q R r A B S a d

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar L1 P Q R r L2 Lukis lingkaran L1 dengan pusat di P berjari-jari R dan lingkaran L2 pusat di Q berjari-jari r (R > r). Hubungkan titik P dan Q.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar S L1 L2 P R r Q R Lukis busur lingkaran berpusat di titik P dan Q sehingga saling berpotongan di titik R dan S.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar S L1 L2 P R T r Q R Hubungkan titik R dengan titik S sehingga memotong garis PQ di titik T.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar S L1 L2 P R T r Q R Lukis busur lingkaran berpusat di titik T dan berjari-jari PT.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar S L1 V L2 P R T r Q U R Lukis busur lingkaran dengan pusat di P, berjari-jari R – r sehingga memotong lingkaran berpusat T di U dan V.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar C S L1 V L2 P R T r Q U A R Hubungkan P dan U, perpanjang sehingga memotong lingkaran L1 di titik A. Hubungkan pula P dan V, perpanjang sehingga memotong lingkaran L1 di titik C.

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar C S L1 V D L2 P R T r Q U B A R Lukis busur lingkaran dengan pusat di A, jari-jari UQ sehingga memotong lingkaran L2 di titik B. Lukis pula busur lingkaran pusat di C, jari-jari VQ sehingga memotong lingkaran L2 di titik D

GARIS SINGGUNG PERSEKUTUAN Melukis Garis Singgung Persekutuan Luar C S L1 V D L2 P R T r Q U B A R Hubungkan titik A dengan titik B dan titik C dengan titik D. Garis AB dan CD merupakan garis singgung persekutuan luar lingkaran L1 dan L2.

GARIS SINGGUNG PERSEKUTUAN Panjang Garis Singgung Persekutuan Dalam   L1 L2 P Q R r A B d a

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Lingkaran dalam suatu segitiga adalah lingkaran yang terletak di dalam segitiga dan menyinggung ketiga sisinya. Titik pusat lingkaran dalam segitiga merupakan titik potong ketiga garis bagi sudut suatu segitiga.

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Dalam Segitiga C Lukis ∆ABC, kemudian lukis garis bagi ABC. Caranya: Lukis busur lingkaran berpusat di titik B sehingga memotong AB di titik D dan BC di titik E Lukis busur lingkaran berpusat di E dan D sehingga saling berpotongan di titik F Tarik garis dari titik B ke titik F, garis BF ini merupakan garis bagi ABC E F A D B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Dalam Segitiga C Lukis pula garis bagi CAB. Caranya: Lukis busur lingkaran berpusat di titik A sehingga memotong AC di titik G dan AB di titik H Lukis busur lingkaran berpusat di G dan H sehingga saling berpotongan di titik I Tarik garis dari titik A ke titik I sehingga memotong garis BF di titik P, garis AI ini merupakan garis bagi CAB P G E I F A H D B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Dalam Segitiga C Jari-jari diperoleh dengan cara menarik garis tegak lurus dari titik P ke salah satu sisi segitiga. Misalnya PQ, tegak lurus AB. Caranya: Lukis busur berpusat di A dan B sehingga Saling berpotongan Lukis garis dari kedua titik potong tersebut kemudian geser hingga memotong titik P dan memotong AB di Q P G E I F A H Q D B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Dalam Segitiga C Lukis lingkaran berpusat di P dengan jari-jari PQ. Lingkaran tersebut merupakan lingkaran dalam segitiga. P G E I F A H Q D B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Panjang Jari-Jari Lingkaran Dalam Segitiga A B C a b c    

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Lingkaran luar segitiga adalah lingkaran yang terletak di luar segitiga dan melalui ketiga titik sudut segitiga tersebut. Titik pusat lingkaran luar segitiga adalah titik potong ketiga garis sumbu sisi-sisi segitiga.

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Luar Segitiga Lukis ∆ABC, kemudian lukis garis sumbu sisi AB. Caranya: Lukis busur lingkaran berpusat di titik A dan B sehingga saling berpotongan Hubungkan kedua titik potong busur tersebut C A B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Luar Segitiga Lukis garis sumbu sisi BC. Caranya: Lukis busur lingkaran berpusat di titik B dan C sehingga saling berpotongan Hubungkan kedua titik potong busur tersebut sehingga kedua sumbu saling di titik P C P A B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Melukis Lingkaran Luar Segitiga Lukis lingkaran berpusat di P dengan jari-jari PB. Lingkaran tersebut merupakan lingkaran luar segitiga ABC. C P A B

LINGKARAN DALAM DAN LINGKARAN LUAR SEGITIGA Panjang Jari-Jari Lingkaran Luar Segitiga   A B C a b c

TERIMA KASIH