PEMROGRAMAN LINIER Pertemuan 2.

Slides:



Advertisements
Presentasi serupa
BAB III Metode Simpleks
Advertisements

Riset Operasional Pertemuan 9
GRAPHICAL SOLUTION OF LINEAR PROGRAMMING PROBLEMS
TEKNIK RISET OPERASIONAL
Riset Operasional Pertemuan 13
Simpleks.
PENGANTAR PROGRAM LINIER & SOLUSI GRAFIK
PROGRAMA LINIER Konsep dasar
Teknik Pencarian Solusi Optimal Metode Grafis
SIMPLEKS BIG-M.
METODE SIMPLEKS Metode ini digunakan untuk kasus kasus yang melibatkan lebih dari dua variabel output.
Metode Simpleks Diperbaiki (Revised Simplex Method)
BUSINESS OPERATION RESEARCH
PERTEMUAN VI Analisa Dualitas dan Sensitivitas Definisi Masalah Dual
PROGRAM LINIER : SOLUSI SIMPLEKS
Pertemuan 3– Menyelesaikan Formulasi Model Dengan Metode Simpleks
Pertemuan 4– Analisis Post Optimal
Metode Simpleks Dengan Tabel
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODE SIMPLEKS OLEH Dr. Edi Sukirman, SSi, MM
METODE SIMPLEKS PRIMAL Evi Kurniati, STP., MT.
Riset Operasional Pertemuan 10
Metode Simpleks Dengan Tabel
KASUS KHUSUS METODE SIMPLEKS
Metode Simpleks Primal (Teknik M & Dua Tahap) dan Simpleks Dual
PROGRAM LINIER : ANALISIS POST- OPTIMAL
Linear Programming (Pemrograman Linier) Program Studi Statistika Semester Ganjil 2011/2012 DR. Rahma Fitriani, S.Si., M.Sc.
Linear Programming.
Metoda Simplex Oleh : Hartrisari H..
Analisis Sensitivitas
Linear Programming (Pemrograman Linier)
PROGRAM LINEAR.
BASIC FEASIBLE SOLUTION
Kasus-kasus Khusus Permasalahan Program Linier
Dosen : Wawan Hari Subagyo
LINEAR PROGRAMMING METODE SIMPLEX
BAHAN AJAR M.K. PROGRAM LINEAR T.A. 2011/2012
LINEAR PROGRAMMING Pertemuan 05
PENYELESAIAN MODEL LP PENYELESAIAN PERMASALAHAN DNG MODEL LP DAPAT DILAKUKAN DENGAN 2 METODE : (1). METODE GRAFIK Metode grafik hanya digunakan untuk.
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
D0104 Riset Operasi I Kuliah VIII - X
Metode Simpleks Dyah Darma Andayani.
LINEAR PROGRAMING (Bagian 3)
Pert.3 Penyelesaian Program Linier Metode Simpleks
Metode simpleks yang diperbaiki menggunakan
Program Linier (Linier Programming)
Masalah PL dgn Simpleks Pertemuan 3:
Metode Simpleks Free Powerpoint Templates.
LINEAR PROGRAMMING Pertemuan 06
Riset Operasional Kuliah ke-4
LINIER PROGRAMMING METODE SIMPLEX
PEMROGRAMAN LINIER Tujuan : Memahami prinsip dan asumsi model LP
MANAJEMEN SAINS METODE SIMPLEKS.
LINEAR PROGRAMMING.
Manajemen Sains Kuliah ke-4
Operations Management
METODA SIMPLEX.
Universitas Ahmad Dahlan Yogyakarta
MODUL I.
Metode Simpleks Rachmat Gunawan, SE, MSi Manajemen Kuantitatif
PEMOGRAMAN LINEAR TABEL SIMPLEKS
Program Linear dengan Metode Simpleks
PROGRAM LINIER : ANALISIS DUALITAS, SENSITIVITAS DAN POST- OPTIMAL
PROGRAM LINEAR DENGAN METODE SIMPLEKS PERTEMUAN 3
(REVISED SIMPLEKS).
TEKNIK RISET OPERASI MUH.AFDAN SYARUR CHAPTER.1
Destyanto Anggoro Industrial Engineering
Metode Simpleks Metode simpleks merupakan prosedur iterasi yang bergerak step by step dan berulang-ulang Jumlah variabel tidak terbatas Penyelesaian masalah.
Oleh : Siti Salamah Ginting, M.Pd. PROGRAM LINIER METODE SIMPLEKS.
METODA SIMPLEKS (Prosedur Simpleks)
Transcript presentasi:

PEMROGRAMAN LINIER Pertemuan 2

Pengantar Program Linier (PL) Dari contoh-contoh yang telah disampaikan pada Pertemuan I, terlihat bahwa terdapat suatu pola tertentu dalam memodelkan suatu masalah Program Linier (PL). Untuk menyelesaikan masalah PL, selalu ditentukan variabel keputusan, fungsi tujuan, dan fungsi batasan.

Bentuk umum dari model PL Fungsi tujuan : Memaksimumkan (Meminimumkan) Fungsi batasan : untuk semua i = 1, 2, …, m semua Xj > 0 Keterangan : Xj = Kegiatan j, di mana j = 1, 2, …., n Z = nilai dari fungsi tujuan Cj = parameter per unit kegiatan bi = jumlah sumber daya i (i = 1, 2, …, m), aij = banyaknya sumber daya i yang dikonsumsi oleh kegiatan j

Asumsi Model Program Linier Linierity Yaitu fungsi tujuan dan semua fungsi batasan merupakan fungsi linier dari variabel-variabel keputusan. Additivity Yaitu tidak ada penyesuaian pada perhitungan variabel keputusan yang disebabkan karena terjadinya interaksi. Divisibility Yaitu nilai solusi yang diperoleh untuk Xj merupakan variabel kontinu. Deterministic Yaitu semua parameter model (Cj, aij, dan bj) diasumsikan diketahui dengan kepastian (certainty).

Istilah-Istilah dalam Program Linier Solution : jawaban akhir dari suatu masalah PL. Feasible solution : penyelesaian yang memenuhi (tidak melanggar) batasan-batasan yang ada. No-feasible solution : tidak ada penyelesaian yang feasible (tidak ada penyelesaian yang memenuhi batasan-batasan yang ada). Optimal solution : feasible solution yang mempunyai nilai tujuan yang optimal atau terbaik. Multiple optimal solution : terdapat beberapa alternatif solusi optimal dalam satu masalah. No- optimal solution : tejadi apabila suatu masalah tidak mempunyai jawaban atau penyelesaian optimal.

Setelah membuat model matematis dari masalah program linier, maka langkah berikutnya adalah pemecahan model untuk pengambilan keputusan, yaitu dengan menggunakan : Metode grafik Metode simpleks

METODE GRAFIK

Pendahuluan Masalah program linier yang dapat diselesaikan dengan metode grafik hanya terbatas pada masalah yang mempunyai 2 variabel keputusan, karena dapat digambarkan dalam dua dimensi grafik. Model dengan 3 variabel keputusan akan memerlukan penggambaran dalam 3 dimensi grafik, di mana prosesnya akan sangat sulit. Sedangkan model dengan 4 atau lebih variabel keputusan tidak dapat dibuat grafik sama sekali.

Tahapan Yang Dilakukan Dalam Metode Grafik Menentukan fungsi tujuan dan fungsi batasan dalam bentuk matematis. Gambarkan masing-masing garis fungsi batasan pada dua dimensi grafik (sistem sumbu koordinat). Tentukan daerah feasible-nya, yaitu himpunan semua titik yang memenuhi batasan. Tentukan penyelesaian feasible-nya, yaitu satu titik pada daerah feasible yang mengakibatkan harga Z optimal.

Contoh 1: Fungsi tujuan : Maks Z = 4 X1 + 5 X2 Fungsi batasan : X1 + 2 X2 < 40 4 X1 + 3 X2 < 120 X1 , X2 > 0

Dengan melihat perpotongan yang ada, maka terdapat 3 alternatif harga X1 dan X2 yaitu : SOLUSI 20 Z = (4).(0) + (5).(20) = 100 30 Z = (4).(30) + (5).( 0) = 120 24 8 Z = (4).(24) + (5).(8) = 136 Dari hasil di atas terlihat bahwa nilai maksimum dari Z adalah 136. Sehingga solusi optimal adalah X1 = 24 , X2 = 8 , dan Z = 136.

Contoh 2 : Fungsi tujuan : Min Z = 6 X1 + 3 X2 Fungsi batasan : 2 X1 + 4 X2 > 16 X1 + 3 X2 > 24 X1 , X2 > 0

Contoh 3 : Fungsi tujuan : Maks Z = 5 X1 + X2 Fungsi batasan :

Solusi Metode Grafik Untuk Kasus Khusus : Solusi Optimal Banyak Fungsi tujuan : Maks Z = 3 X1 + 2 X2 Fungsi batasan : 6 X1 + 4 X2 < 240 X1 + X2 < 50 X1 , X2 > 0

Fungsi tujuan : Maks Z = 3 X1 + 2 X2 Fungsi batasan : Tanpa Solusi Feasible Fungsi tujuan : Maks Z = 3 X1 + 2 X2 Fungsi batasan : 6 X1 + 4 X2 < 240 X1 + X2 < 50 X1 > 30 X2 > 20 X1 , X2 > 0

Solusi Tidak Terbatas Fungsi tujuan : Maks Z = 2 X1 - X2 Fungsi batasan : X1 - X2 < 1 2 X1 + X2 > 6 X1 , X2 > 0

METODE SIMPLEKS

Pendahuluan Merupakan metode yang umum digunakan untuk menyelesaikan seluruh problem program linier, baik yang melibatkan dua variabel keputusan maupun lebih dari dua variabel keputusan.

Metode simpleks pertama kali diperkenalkan oleh George B Metode simpleks pertama kali diperkenalkan oleh George B. Dantzig pada tahun 1947 dan telah diperbaiki oleh beberapa ahli lain. Metode penyelesaian dari metode simpleks ini melalui perhitungan ulang (iteration) dimana langkah-langkah perhitungan yang sama diulang-ulang sebelum solusi optimal diperoleh

Penyelesaian Dengan Metode Simpleks Syarat : Model program linier ( Canonical form) harus dirubah dulu kedalam suatu bentuk umum yang dinamakan ”bentuk baku” (standard form).

Ciri-ciri dari bentuk baku model program linier Semua fungsi kendala/pembatas berupa persamaan dengan sisi kanan non-negatif. Semua variabel keputusan non-negatif. Fungsi tujuan dapat memaksimumkan maupun meminimumkan

Fungsi tujuan : Maks / Min Z = CX Fungsi pembatas : AX = b X > 0 dapat dituliskan : Fungsi tujuan : Maks / Min Z = CX Fungsi pembatas : AX = b X > 0

Perlu diperhatikan : Bahwa metode simpleks hanya bisa dipakai (diaplikasikan) pada bentuk standar, sehingga kalau tidak dalam bentuk standar harus ditransformasikan dulu menjadi bentuk standar.

Untuk memudahkan melakukan transformasi ke bentuk standar, beberapa hal yang perlu diperhatikan : Fungsi Pembatas Suatu fungsi pembatas yang mempunyai tanda < diubah menjadi suatu bentuk persamaan (bentuk standar) dengan cara menambahkan suatu variabel baru yang dinamakan slack variable (variabel pengurang).

Fungsi Tujuan Dengan adanya slack variable pada fungsi pembatas, maka fungsi tujuan juga harus disesuaikan dengan memasukkan unsur slack variable ini. Karena slack variable tidak mempunyai kontribusi apa-apa terhadap fungsi tujuan, maka konstanta untuk slack variable tersebut dituliskan nol.

Contoh 1 : Fungsi tujuan : Maks Z = 4 X1 + 5 X2 Fungsi pembatas : Rubahlah menjadi bentuk standar.

Untuk merubah menjadi bentuk standar, maka harus menambahkan slack variable, menjadi : X1 + 2 X2 < 40  X1 + 2 X2 + S1 = 40 4 X1 + 3 X2 < 120  4 X1 + 3 X2 + S2 = 120 Setelah ditambahkan slack variable, maka fungsi tujuan menjadi : Maks Z = 4 X1 + 5 X2 + 0 S1 + 0 S2

Contoh 2 : Fungsi tujuan : Fungsi pembatas : Maks Z = 60 X1 + 30 X2 +20 X3 Fungsi pembatas : 8 X1 + 6 X2 + X3 < 48 4 X1 + 2 X2 < 20 2 X1 + 1,5 X2 + 1,5 X3 < 8 X2 < 5 X1 , X2 , X3 > 0

dengan menambahkan slack variable, menjadi : 8 X1 + 6 X2 + X3 < 48  8 X1 + 6 X2 + X3 + S1 = 48 4 X1 + 2 X2 < 20  4 X1 + 2 X2 + S2 = 20 2 X1 + 1,5 X2 + 1,5 X3 < 8 2 X1 + 1,5 X2 + 1,5 X3 + S3 = 8 X2 < 5  X2 + S4 = 5 Setelah ditambahkan slack variable, maka fungsi tujuan menjadi : Maks Z = 4 X1 + 5 X2 + 0 S1 + 0 S2 + + 0 S3 + 0 S4

Contoh 3 : Fungsi tujuan : Min Z = 2 X1 - 3 X2 Fungsi pembatas :

dengan menambahkan slack variable, menjadi: X1 + X2 < 4  X1 + X2 + S1 = 4 X1 - X2 < 6  X1 - X2 + S2 = 6 Setelah ditambahkan slack variable, maka fungsi tujuan menjadi : Min Z = 2 X1 - 3 X2 + 0 S1 + 0 S2

Metode dan Tabel Simpleks Setelah fungsi batasan dirubah ke dalam bentuk persamaan (bentuk standar), maka untuk menyelesaikan masalah program linier dengan metode simpleks dibutuhkan matriks A yang berisi variabel basis dan variabel non-basis. pada contoh 1, diperoleh matriks A yaitu:

Variabel basis adalah S1 dan S2, sedangkan variabel non-basis adalah variabel X1 dan variabel X2 Matriks basis biasanya dinyatakan dengan BFS (Basis Feasible Solution), dan dituliskan dengan matriks B ( matriks identitas) yaitu :

Tabel Simpleks Langkah-langkah penyelesaian dalam metode simpleks adalah dengan menggunakan suatu kerangka tabel yang disebut dengan tabel simpleks. Tabel ini mengatur model ke dalam suatu bentuk yang memungkinkan untuk penerapan penghitungan matematis menjadi lebih mudah

Langkah-langkah metode simpleks Mengubah bentuk batasan model pertidaksamaan menjadi persamaan. Membentuk tabel awal untuk solusi feasible dasar pada titik orijin dan menghitung nilai-nilai baris zj dan cj – zj.

Contoh bentuk tabel simpleks cj Variabel 4 5 Basis Kuantitas X1 X2 S1 S2 40 1 2 120 3 zj cj - zj

Langkah-langkah metode simpleks Menentukan kolom pivot (kolom pemutar) dengan cara memilih kolom yang memiliki nilai positif terbesar pada baris cj – zj. Kolom pivot ini digunakan untuk menentukan variabel non-basis yang akan masuk ke dalam variabel basis.

Langkah-langkah metode simpleks cj Variabel 4 5 Basis Kuantitas X1 X2 S1 S2 40 1 2 120 3 zj cj - zj

Menentukan baris pivot (baris pemutar) dengan cara membagi nilai-nilai pada kolom kuantitas dengan nilai-nilai pada kolom pivot, kemudian memilih baris dengan hasil bagi yang non-negatif terkecil. Baris pivot ini digunakan untuk menentukan variabel basis yang akan keluar dari variabel basis.

Langkah-langkah metode simpleks cj Varia bel 4 5 Kuan Titas Basis titas X1 X2 S1 S2 /kol pivot 40 1 2 40/2 = 20 120 3 120/3=40 zj cj - zj

Perpotongan antara kolom pivot dan baris pivot diperoleh nilai pivot. Mengubah nilai baris pivot yang baru dengan cara : Sehingga pada tabel baru, nilai pivot menjadi 1.

Langkah-langkah metode simpleks cj Varia bel 4 5 Basis Kuan Titas X1 X2 S1 S2 40/2 1/2 2/2 0/2 zj cj - zj

Langkah-langkah metode simpleks cj Varia bel 4 5 Basis Kuan Titas X1 X2 S1 S2 20 1/2 1 zj cj - zj

Menghitung baris-baris zj dan cj – zj. Menghitung nilai baris lainnya dengan cara : Menghitung baris-baris zj dan cj – zj. Menentukan apakah solusi telah optimal dengan cara mengecek baris cj – zj. Jika nilai cj – zj adalah nol atau negatif, maka solusi telah optimal. Tetapi jika masih terdapat nilai positif, maka kembali ke langkah c dan mengulangi kembali langkah-langkah selanjutnya.

kolom nilai baris –| koefisien kol * nilai | lama | pemutar baris| =nilai akhir | yg berhubungan | Kuantitas 120 - (3 X 20 ) = 60 X1 4 - (3 X 1/2 ) = 5/2 X2 3 - (3 X 1 ) = 0 S1 0 - (3 X 1/2 ) = - 3/2 S2 1 - (3 X 0 ) = 1

Langkah-langkah metode simpleks cj Varia bel 4 5 Kuan Titas Basis X1 X2 S1 S2 /kol pivot 20 1/2 1 40 60 5/2 -3/2 24 zj 100 cj - zj 3/2 -5/2

Langkah-langkah metode simpleks cj Varia bel 4 5 Kuan Titas Basis X1 X2 S1 S2 /kol pivot 24 1 -0.6 0.4 zj cj - zj

Langkah-langkah metode simpleks cj Varia bel 4 5 Kuan Titas Basis X1 X2 S1 S2 /kol pivot 8 1 0.8 -0.2 24 -0.6 0.4 zj 136 1.6 0.6 cj - zj -1.6

Contoh 1: Fungsi tujuan : Maks Z = 4 X1 + 5 X2 Fungsi pembatas : Selesaikan dengan metode simpleks

Contoh 2: Fungsi tujuan : Maks Z = 60 X1 + 30 X2 + 20 X3 Fungsi pembatas : 8 X1 + 6 X2 + X3 < 48 4 X1 + 2 X2 < 20 2 X1 + 1,5 X2 + 1,5 X3 < 8 X2 < 5 X1 , X2 , X3 > 0 Selesaikan dengan metode simpleks

Metode Simpleks (Big-M) (Meminimalkan Z, dengan batasan >) (Masalah Batasan Campuran)

Aturan yang dapat digunakan untuk memudahkan penyelesaian: Batasan Penyesuaian fungsi batasan Koefisien fungsi tujuan Maksimisasi Minimisasi < Tambah slack variabel = Tambah artificial variabel -M M > Kurang slack variabel Dan tambah artificial variabel

Contoh 3: Fungsi tujuan : Min Z = 6X1 + 3 X2 Fungsi pembatas : Selesaikan dengan metode simpleks

Contoh 4: Fungsi tujuan : Maks Z = 400 X1 + 200 X2 Fungsi pembatas : Selesaikan dengan metode simpleks